import streamlit as st import gradio as gr import cv2 import numpy as np from tensorflow.keras.models import load_model from tensorflow.keras.applications.vgg16 import preprocess_input from tensorflow.keras.preprocessing import image # Loading Models braintumor_model = load_model('models/brain_tumor_binary.h5') # Configuring Streamlit st.set_page_config(page_title="Brain Tumor Prediction App", page_icon=":brain:") def preprocess_imgs(set_name, img_size): set_new = [] for img in set_name: img = cv2.resize(img, dsize=img_size, interpolation=cv2.INTER_CUBIC) set_new.append(preprocess_input(img)) return np.array(set_new) # Handle binary decision def binary_decision(confidence): return 1 if confidence >= 0.5 else 0 def predict_braintumor(img): # If it's a NumPy array, use it directly if isinstance(img, np.ndarray): img_gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) else: # Convert Gradio image data to bytes img_bytes = img.read() # Convert to NumPy array nparr = np.frombuffer(img_bytes, np.uint8) # Decode image img_gray = cv2.imdecode(nparr, cv2.IMREAD_GRAYSCALE) # Crop and preprocess the grayscale image img_processed = preprocess_imgs([img_gray], (224, 224)) # Make prediction pred = braintumor_model.predict(img_processed) # Handle binary decision confidence = pred[0][0] return "Brain Tumor Not Found!" if binary_decision(confidence) == 1 else "Brain Tumor Found!" def main(): st.title("Brain Tumor Prediction App") uploaded_file = st.file_uploader("Choose an image...", type=["png", "jpg", "jpeg"]) if uploaded_file is not None: st.image(uploaded_file, caption="Uploaded Image.", use_column_width=True) st.write("") st.write("Classifying...") # Make prediction result = predict_braintumor(uploaded_file) # Display prediction st.subheader("Prediction:") st.success(result) if __name__ == "__main__": # Streamlit app main() # Gradio interface iface = gr.Interface( fn=predict_braintumor, inputs="image", outputs="text", examples=[["examples/1_no.jpeg"], ["examples/2_no.jpeg"], ["examples/3_no.jpg"], ["examples/Y1.jpg"], ["examples/Y2.jpeg"], ["examples/Y3.jpg"]] ) iface.launch()