Spaces:
Runtime error
Runtime error
import streamlit as st | |
import gradio as gr | |
import cv2 | |
import numpy as np | |
from tensorflow.keras.models import load_model | |
from tensorflow.keras.applications.vgg16 import preprocess_input | |
from tensorflow.keras.preprocessing import image | |
# Loading Models | |
braintumor_model = load_model('models/brain_tumor_binary.h5') | |
# Configuring Streamlit | |
st.set_page_config(page_title="Brain Tumor Prediction App", page_icon=":brain:") | |
def preprocess_imgs(set_name, img_size): | |
set_new = [] | |
for img in set_name: | |
img = cv2.resize(img, dsize=img_size, interpolation=cv2.INTER_CUBIC) | |
set_new.append(preprocess_input(img)) | |
return np.array(set_new) | |
# Handle binary decision | |
def binary_decision(confidence): | |
return 1 if confidence >= 0.5 else 0 | |
def predict_braintumor(img): | |
# If it's a NumPy array, use it directly | |
if isinstance(img, np.ndarray): | |
img_gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) | |
else: | |
# Convert Gradio image data to bytes | |
img_bytes = img.read() | |
# Convert to NumPy array | |
nparr = np.frombuffer(img_bytes, np.uint8) | |
# Decode image | |
img_gray = cv2.imdecode(nparr, cv2.IMREAD_GRAYSCALE) | |
# Crop and preprocess the grayscale image | |
img_processed = preprocess_imgs([img_gray], (224, 224)) | |
# Make prediction | |
pred = braintumor_model.predict(img_processed) | |
# Handle binary decision | |
confidence = pred[0][0] | |
return "Brain Tumor Not Found!" if binary_decision(confidence) == 1 else "Brain Tumor Found!" | |
def main(): | |
st.title("Brain Tumor Prediction App") | |
uploaded_file = st.file_uploader("Choose an image...", type=["png", "jpg", "jpeg"]) | |
if uploaded_file is not None: | |
st.image(uploaded_file, caption="Uploaded Image.", use_column_width=True) | |
st.write("") | |
st.write("Classifying...") | |
# Make prediction | |
result = predict_braintumor(uploaded_file) | |
# Display prediction | |
st.subheader("Prediction:") | |
st.success(result) | |
if __name__ == "__main__": | |
# Streamlit app | |
main() | |
# Gradio interface | |
iface = gr.Interface( | |
fn=predict_braintumor, | |
inputs="image", | |
outputs="text", | |
examples=[["examples/1_no.jpeg"], ["examples/2_no.jpeg"], ["examples/3_no.jpg"], ["examples/Y1.jpg"], ["examples/Y2.jpeg"], ["examples/Y3.jpg"]] | |
) | |
iface.launch() | |