Spaces:
Runtime error
Runtime error
File size: 2,327 Bytes
3c4d877 934e107 3c4d877 1db9a6e f1bea19 a00b28d e769983 ca99111 a00b28d e769983 a00b28d 3c4d877 a00b28d 3c4d877 1db9a6e f1bea19 3c4d877 1db9a6e f1bea19 3c4d877 f1bea19 3c4d877 1db9a6e 890a9f7 1db9a6e c496c70 2765643 c496c70 890a9f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
import streamlit as st
import gradio as gr
import cv2
import numpy as np
from tensorflow.keras.models import load_model
from tensorflow.keras.applications.vgg16 import preprocess_input
from tensorflow.keras.preprocessing import image
# Loading Models
braintumor_model = load_model('models/brain_tumor_binary.h5')
# Configuring Streamlit
st.set_page_config(page_title="Brain Tumor Prediction App", page_icon=":brain:")
def preprocess_imgs(set_name, img_size):
set_new = []
for img in set_name:
img = cv2.resize(img, dsize=img_size, interpolation=cv2.INTER_CUBIC)
set_new.append(preprocess_input(img))
return np.array(set_new)
# Handle binary decision
def binary_decision(confidence):
return 1 if confidence >= 0.5 else 0
def predict_braintumor(img):
# If it's a NumPy array, use it directly
if isinstance(img, np.ndarray):
img_gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
else:
# Convert Gradio image data to bytes
img_bytes = img.read()
# Convert to NumPy array
nparr = np.frombuffer(img_bytes, np.uint8)
# Decode image
img_gray = cv2.imdecode(nparr, cv2.IMREAD_GRAYSCALE)
# Crop and preprocess the grayscale image
img_processed = preprocess_imgs([img_gray], (224, 224))
# Make prediction
pred = braintumor_model.predict(img_processed)
# Handle binary decision
confidence = pred[0][0]
return "Brain Tumor Found!" if binary_decision(confidence) == 1 else "Brain Tumor Not Found!"
def main():
st.title("Brain Tumor Prediction App")
uploaded_file = st.file_uploader("Choose an image...", type=["png", "jpg", "jpeg"])
if uploaded_file is not None:
st.image(uploaded_file, caption="Uploaded Image.", use_column_width=True)
st.write("")
st.write("Classifying...")
# Make prediction
result = predict_braintumor(uploaded_file)
# Display prediction
st.subheader("Prediction:")
st.success(result)
if __name__ == "__main__":
# Streamlit app
main()
# Gradio interface
iface = gr.Interface(
fn=predict_braintumor,
inputs="image",
outputs="text",
examples=[["examples/1_no.jpeg"], ["examples/2_no.jpeg"], ["examples/Y1.jpg"], ["examples/Y2.jpg"]]
)
iface.launch()
|