import streamlit as st from PIL import Image import face_recognition import cv2 import numpy as np import os def load_images(directory): images = [] classnames = [] file_list = os.listdir(directory) st.write("Photographs found in folder : ") for file in file_list: if os.path.splitext(file)[1] in [".jpg", ".jpeg"]: img_path = os.path.join(directory, file) cur_img = cv2.imread(img_path) images.append(cur_img) st.write(os.path.splitext(file)[0]) classnames.append(os.path.splitext(file)[0]) return images, classnames def recognize_faces(test_image, known_encodings, class_names): imgS = cv2.resize(test_image, (0, 0), None, 0.25, 0.25) imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB) facesCurFrame = face_recognition.face_locations(imgS) encodesCurFrame = face_recognition.face_encodings(imgS, facesCurFrame) name = "Unknown" # Default name for unknown faces match_found = False # Flag to track if a match is found # Checking if faces are detected if len(encodesCurFrame) > 0: for encodeFace, faceLoc in zip(encodesCurFrame, facesCurFrame): matches = face_recognition.compare_faces(known_encodings, encodeFace) faceDis = face_recognition.face_distance(known_encodings, encodeFace) matchIndex = np.argmin(faceDis) if matches[matchIndex]: name = class_names[matchIndex].upper() match_found = True # Set the flag to True y1, x2, y2, x1 = faceLoc y1, x2, y2, x1 = (y1 * 4), (x2 * 4), (y2 * 4) ,(x1 * 4) cv2.rectangle(test_image, (x1, y1), (x2, y2), (0, 255, 0), 2) cv2.rectangle(test_image, (x1, y2 - 35), (x2, y2), (0, 255, 0), cv2.FILLED) cv2.putText(test_image, name, (x1 + 6, y2 - 6), cv2.FONT_HERSHEY_COMPLEX, 1, (255, 255, 255), 2) return test_image st.title("AIMLJan24 - Face Recognition") # Load images for face recognition directory = "photos" Images, classnames = load_images(directory) # Load images for face recognition encodeListknown = [face_recognition.face_encodings(img)[0] for img in Images] # camera to take photo of user in question file_name = st.file_uploader("Upload image") if file_name is not None: test_image = np.array(Image.open(file_name)) image_with_recognition = recognize_faces(test_image, encodeListknown, classnames) st.image(image_with_recognition, use_column_width=True, output_format="PNG")