Spaces:
Sleeping
Sleeping
from PIL import Image | |
import numpy as np | |
import cv2 | |
import requests | |
import face_recognition | |
import os | |
from datetime import datetime | |
import streamlit as st | |
# Set page title and description | |
st.set_page_config( | |
page_title="Attendance System Using Face Recognition", | |
page_icon="π·", | |
layout="centered", | |
initial_sidebar_state="collapsed" | |
) | |
st.title("Attendance System Using Face Recognition π·") | |
st.markdown("This app recognizes faces in an image and updates attendance records with current timestamp & Location.") | |
# Load images for face recognition | |
Images = [] | |
classnames = [] | |
directory = "photos" | |
myList = os.listdir(directory) | |
for cls in myList: | |
if os.path.splitext(cls)[1] in [".jpg", ".jpeg"]: | |
img_path = os.path.join(directory, cls) | |
curImg = cv2.imread(img_path) | |
Images.append(curImg) | |
classnames.append(os.path.splitext(cls)[0]) | |
def findEncodings(Images): | |
encodeList = [] | |
for img in Images: | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
encode = face_recognition.face_encodings(img)[0] | |
encodeList.append(encode) | |
return encodeList | |
encodeListknown = findEncodings(Images) | |
# Take picture using the camera | |
img_file_buffer = st.camera_input("Take a picture") | |
if img_file_buffer is not None: | |
test_image = Image.open(img_file_buffer) | |
image = np.asarray(test_image) | |
imgS = cv2.resize(image, (0, 0), None, 0.25, 0.25) | |
imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB) | |
facesCurFrame = face_recognition.face_locations(imgS) | |
encodesCurFrame = face_recognition.face_encodings(imgS, facesCurFrame) | |
name = "Unknown" # Default name for unknown faces | |
if len(encodesCurFrame) > 0: | |
for encodeFace, faceLoc in zip(encodesCurFrame, facesCurFrame): | |
matches = face_recognition.compare_faces(encodeListknown, encodeFace) | |
faceDis = face_recognition.face_distance(encodeListknown, encodeFace) | |
matchIndex = np.argmin(faceDis) | |
if matches[matchIndex]: | |
name = classnames[matchIndex].upper() | |
y1, x2, y2, x1 = faceLoc | |
y1, x2, y2, x1 = y1 * 4, x2 * 4, y2 * 4, x1 * 4 | |
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2) | |
cv2.rectangle(image, (x1, y2 - 35), (x2, y2), (0, 255, 0), cv2.FILLED) | |
cv2.putText(image, name, (x1 + 6, y2 - 6), cv2.FONT_HERSHEY_COMPLEX, 1, (255, 255, 255), 2) | |
if name != "Unknown": | |
url = "https://mrvishal7705.000webhostapp.com" | |
url1 = "/update.php" | |
data1 = {'name': name} | |
response = requests.post(url + url1, data=data1) | |
if response.status_code == 200: | |
st.success("Data updated on: " + url) | |
else: | |
st.warning("Data not updated") | |
# Apply styling with CSS | |
st.markdown('<style>img { animation: pulse 2s infinite; }</style>', unsafe_allow_html=True) | |
st.image(image, use_column_width=True, output_format="PNG") | |
if name == "Unknown": | |
st.info("Face not detected. Please try again.") |