TheoLvs commited on
Commit
f0fc5f8
1 Parent(s): ab8500f

Updated app 1.2.0

Browse files
.gitignore CHANGED
@@ -3,4 +3,5 @@ __pycache__/app.cpython-38.pyc
3
  __pycache__/app.cpython-39.pyc
4
  __pycache__/utils.cpython-38.pyc
5
 
6
- notebooks/
 
 
3
  __pycache__/app.cpython-39.pyc
4
  __pycache__/utils.cpython-38.pyc
5
 
6
+ notebooks/
7
+ *.pyc
app.py CHANGED
@@ -1,163 +1,187 @@
1
  import gradio as gr
2
- from haystack.document_stores import FAISSDocumentStore
3
- from haystack.nodes import EmbeddingRetriever
4
- import openai
5
  import pandas as pd
 
6
  import os
 
 
7
  from utils import (
8
  make_pairs,
9
  set_openai_api_key,
10
  create_user_id,
11
  to_completion,
12
  )
13
- import numpy as np
14
- from datetime import datetime
15
  from azure.storage.fileshare import ShareServiceClient
16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  try:
18
  from dotenv import load_dotenv
19
  load_dotenv()
20
  except:
21
  pass
22
 
23
-
24
  theme = gr.themes.Soft(
25
  primary_hue="sky",
26
  font=[gr.themes.GoogleFont("Poppins"), "ui-sans-serif", "system-ui", "sans-serif"],
27
  )
28
 
29
- init_prompt = (
30
- "You are ClimateQA, an AI Assistant by Ekimetrics. "
31
- "You are given a question and extracted parts of the IPCC and IPBES reports."
32
- "Provide a clear and structured answer based on the context provided. "
33
- "When relevant, use bullet points and lists to structure your answers."
34
- )
35
- sources_prompt = (
36
- "When relevant, use facts and numbers from the following documents in your answer. "
37
- "Whenever you use information from a document, reference it at the end of the sentence (ex: [doc 2]). "
38
- "You don't have to use all documents, only if it makes sense in the conversation. "
39
- "If no relevant information to answer the question is present in the documents, "
40
- "just say you don't have enough information to answer."
41
- )
42
-
43
-
44
- def get_reformulation_prompt(query: str) -> str:
45
- return f"""Reformulate the following user message to be a short standalone question in English, in the context of an educational discussion about climate change.
46
- ---
47
- query: La technologie nous sauvera-t-elle ?
48
- standalone question: Can technology help humanity mitigate the effects of climate change?
49
- language: French
50
- ---
51
- query: what are our reserves in fossil fuel?
52
- standalone question: What are the current reserves of fossil fuels and how long will they last?
53
- language: English
54
- ---
55
- query: what are the main causes of climate change?
56
- standalone question: What are the main causes of climate change in the last century?
57
- language: English
58
- ---
59
- query: {query}
60
- standalone question:"""
61
-
62
 
63
  system_template = {
64
  "role": "system",
65
  "content": init_prompt,
66
  }
67
 
68
- openai.api_type = "azure"
69
- openai.api_key = os.environ["api_key"]
70
- openai.api_base = os.environ["ressource_endpoint"]
71
- openai.api_version = "2023-06-01-preview"
72
-
73
- retriever = EmbeddingRetriever(
74
- document_store=FAISSDocumentStore.load(
75
- index_path="./climateqa_v3.faiss",
76
- config_path="./climateqa_v3.json",
77
- ),
78
- embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1",
79
- model_format="sentence_transformers",
80
- progress_bar=False,
81
- )
82
 
83
- # retrieve_giec = EmbeddingRetriever(
84
- # document_store=FAISSDocumentStore.load(
85
- # index_path="./documents/climate_gpt_v2_only_giec.faiss",
86
- # config_path="./documents/climate_gpt_v2_only_giec.json",
87
- # ),
88
- # embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1",
89
- # model_format="sentence_transformers",
90
- # )
91
-
92
- credential = {
93
- "account_key": os.environ["account_key"],
94
- "account_name": os.environ["account_name"],
95
- }
96
 
97
- account_url = os.environ["account_url"]
98
- file_share_name = "climategpt"
99
- service = ShareServiceClient(account_url=account_url, credential=credential)
100
- share_client = service.get_share_client(file_share_name)
101
  user_id = create_user_id(10)
102
 
103
 
 
 
 
104
 
105
- def filter_sources(df,k_summary = 3,k_total = 10,source = "ipcc"):
106
- assert source in ["ipcc","ipbes","all"]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
107
 
108
- # Filter by source
109
- if source == "ipcc":
110
- df = df.loc[df["source"]=="IPCC"]
111
- elif source == "ipbes":
112
- df = df.loc[df["source"]=="IPBES"]
113
- else:
114
- pass
115
-
116
- # Separate summaries and full reports
117
- df_summaries = df.loc[df["report_type"].isin(["SPM","TS"])]
118
- df_full = df.loc[~df["report_type"].isin(["SPM","TS"])]
119
-
120
- # Find passages from summaries dataset
121
- passages_summaries = df_summaries.head(k_summary)
122
-
123
- # Find passages from full reports dataset
124
- passages_fullreports = df_full.head(k_total - len(passages_summaries))
125
-
126
- # Concatenate passages
127
- passages = pd.concat([passages_summaries,passages_fullreports],axis = 0,ignore_index = True)
128
- return passages
129
-
130
-
131
- def retrieve_with_summaries(query,retriever,k_summary = 3,k_total = 10,source = "ipcc",max_k = 100,threshold = 0.555,as_dict = True):
132
- assert max_k > k_total
133
- docs = retriever.retrieve(query,top_k = max_k)
134
- docs = [{**x.meta,"score":x.score,"content":x.content} for x in docs if x.score > threshold]
135
- if len(docs) == 0:
136
- return []
137
- res = pd.DataFrame(docs)
138
- passages_df = filter_sources(res,k_summary,k_total,source)
139
- if as_dict:
140
- contents = passages_df["content"].tolist()
141
- meta = passages_df.drop(columns = ["content"]).to_dict(orient = "records")
142
- passages = []
143
- for i in range(len(contents)):
144
- passages.append({"content":contents[i],"meta":meta[i]})
145
- return passages
146
  else:
147
- return passages_df
 
 
 
 
 
 
 
 
148
 
149
 
150
  def make_html_source(source,i):
151
- meta = source['meta']
 
152
  return f"""
153
  <div class="card">
154
  <div class="card-content">
155
- <h2>Doc {i} - {meta['short_name']} - Page {meta['page_number']}</h2>
156
- <p>{source['content']}</p>
157
  </div>
158
  <div class="card-footer">
159
  <span>{meta['name']}</span>
160
- <a href="{meta['url']}#page={meta['page_number']}" target="_blank" class="pdf-link">
161
  <span role="img" aria-label="Open PDF">🔗</span>
162
  </a>
163
  </div>
@@ -166,106 +190,106 @@ def make_html_source(source,i):
166
 
167
 
168
 
169
- def chat(
170
- user_id: str,
171
- query: str,
172
- history: list = [system_template],
173
- report_type: str = "IPCC",
174
- threshold: float = 0.555,
175
- ) -> tuple:
176
- """retrieve relevant documents in the document store then query gpt-turbo
177
-
178
- Args:
179
- query (str): user message.
180
- history (list, optional): history of the conversation. Defaults to [system_template].
181
- report_type (str, optional): should be "All available" or "IPCC only". Defaults to "All available".
182
- threshold (float, optional): similarity threshold, don't increase more than 0.568. Defaults to 0.56.
183
-
184
- Yields:
185
- tuple: chat gradio format, chat openai format, sources used.
186
- """
187
-
188
- if report_type not in ["IPCC","IPBES"]: report_type = "all"
189
- print("Searching in ",report_type," reports")
190
- # if report_type == "All available":
191
- # retriever = retrieve_all
192
- # elif report_type == "IPCC only":
193
- # retriever = retrieve_giec
194
- # else:
195
- # raise Exception("report_type arg should be in (All available, IPCC only)")
196
-
197
- reformulated_query = openai.Completion.create(
198
- engine="EkiGPT",
199
- prompt=get_reformulation_prompt(query),
200
- temperature=0,
201
- max_tokens=128,
202
- stop=["\n---\n", "<|im_end|>"],
203
- )
204
- reformulated_query = reformulated_query["choices"][0]["text"]
205
- reformulated_query, language = reformulated_query.split("\n")
206
- language = language.split(":")[1].strip()
207
-
208
-
209
- sources = retrieve_with_summaries(reformulated_query,retriever,k_total = 10,k_summary = 3,as_dict = True,source = report_type.lower(),threshold = threshold)
210
- response_retriever = {
211
- "language":language,
212
- "reformulated_query":reformulated_query,
213
- "query":query,
214
- "sources":sources,
215
- }
216
-
217
- # docs = [d for d in retriever.retrieve(query=reformulated_query, top_k=10) if d.score > threshold]
218
- messages = history + [{"role": "user", "content": query}]
219
-
220
- if len(sources) > 0:
221
- docs_string = []
222
- docs_html = []
223
- for i, d in enumerate(sources, 1):
224
- docs_string.append(f"📃 Doc {i}: {d['meta']['short_name']} page {d['meta']['page_number']}\n{d['content']}")
225
- docs_html.append(make_html_source(d,i))
226
- docs_string = "\n\n".join([f"Query used for retrieval:\n{reformulated_query}"] + docs_string)
227
- docs_html = "\n\n".join([f"Query used for retrieval:\n{reformulated_query}"] + docs_html)
228
- messages.append({"role": "system", "content": f"{sources_prompt}\n\n{docs_string}\n\nAnswer in {language}:"})
229
-
230
-
231
- response = openai.Completion.create(
232
- engine="EkiGPT",
233
- prompt=to_completion(messages),
234
- temperature=0, # deterministic
235
- stream=True,
236
- max_tokens=1024,
237
- )
238
-
239
- complete_response = ""
240
- messages.pop()
241
-
242
- messages.append({"role": "assistant", "content": complete_response})
243
- timestamp = str(datetime.now().timestamp())
244
- file = user_id[0] + timestamp + ".json"
245
- logs = {
246
- "user_id": user_id[0],
247
- "prompt": query,
248
- "retrived": sources,
249
- "report_type": report_type,
250
- "prompt_eng": messages[0],
251
- "answer": messages[-1]["content"],
252
- "time": timestamp,
253
- }
254
- log_on_azure(file, logs, share_client)
255
-
256
- for chunk in response:
257
- if (chunk_message := chunk["choices"][0].get("text")) and chunk_message != "<|im_end|>":
258
- complete_response += chunk_message
259
- messages[-1]["content"] = complete_response
260
- gradio_format = make_pairs([a["content"] for a in messages[1:]])
261
- yield gradio_format, messages, docs_html
262
-
263
- else:
264
- docs_string = "⚠️ No relevant passages found in the climate science reports (IPCC and IPBES)"
265
- complete_response = "**⚠️ No relevant passages found in the climate science reports (IPCC and IPBES), you may want to ask a more specific question (specifying your question on climate issues).**"
266
- messages.append({"role": "assistant", "content": complete_response})
267
- gradio_format = make_pairs([a["content"] for a in messages[1:]])
268
- yield gradio_format, messages, docs_string
269
 
270
 
271
  def save_feedback(feed: str, user_id):
@@ -290,162 +314,194 @@ def log_on_azure(file, logs, share_client):
290
  file_client.upload_file(str(logs))
291
 
292
 
293
- with gr.Blocks(title="🌍 Climate Q&A", css="style.css", theme=theme) as demo:
294
- user_id_state = gr.State([user_id])
295
 
296
- # Gradio
297
- gr.Markdown("<h1><center>Climate Q&A 🌍</center></h1>")
298
- gr.Markdown("<h4><center>Ask climate-related questions to the IPCC reports</center></h4>")
299
- gr.Markdown("<h2 style='color:red'><center>WARNING - We have a small temporary bug on HF platform, you can use the new v1.0 version in the meantime https://climateqa.com</center></h4>")
300
-
301
-
302
- with gr.Row():
303
- with gr.Column(scale=2):
304
- chatbot = gr.Chatbot(elem_id="chatbot", label="ClimateQ&A chatbot",show_label = False)
305
- state = gr.State([system_template])
306
-
307
- with gr.Row():
308
- ask = gr.Textbox(
309
- show_label=False,
310
- placeholder="Ask here your climate-related question and press enter",
311
- ).style(container=False)
312
- ask_examples_hidden = gr.Textbox(elem_id="hidden-message")
313
-
314
- examples_questions = gr.Examples(
315
- [
316
- "Is climate change caused by humans?",
317
- "What evidence do we have of climate change?",
318
- "What are the impacts of climate change?",
319
- "Can climate change be reversed?",
320
- "What is the difference between climate change and global warming?",
321
- "What can individuals do to address climate change?",
322
- "What are the main causes of climate change?",
323
- "What is the Paris Agreement and why is it important?",
324
- "Which industries have the highest GHG emissions?",
325
- "Is climate change a hoax created by the government or environmental organizations?",
326
- "What is the relationship between climate change and biodiversity loss?",
327
- "What is the link between gender equality and climate change?",
328
- "Is the impact of climate change really as severe as it is claimed to be?",
329
- "What is the impact of rising sea levels?",
330
- "What are the different greenhouse gases (GHG)?",
331
- "What is the warming power of methane?",
332
- "What is the jet stream?",
333
- "What is the breakdown of carbon sinks?",
334
- "How do the GHGs work ? Why does temperature increase ?",
335
- "What is the impact of global warming on ocean currents?",
336
- "How much warming is possible in 2050?",
337
- "What is the impact of climate change in Africa?",
338
- "Will climate change accelerate diseases and epidemics like COVID?",
339
- "What are the economic impacts of climate change?",
340
- "How much is the cost of inaction ?",
341
- "What is the relationship between climate change and poverty?",
342
- "What are the most effective strategies and technologies for reducing greenhouse gas (GHG) emissions?",
343
- "Is economic growth possible? What do you think about degrowth?",
344
- "Will technology save us?",
345
- "Is climate change a natural phenomenon ?",
346
- "Is climate change really happening or is it just a natural fluctuation in Earth's temperature?",
347
- "Is the scientific consensus on climate change really as strong as it is claimed to be?",
348
- ],
349
- [ask_examples_hidden],
350
- examples_per_page=15,
351
- )
352
-
353
- with gr.Column(scale=1, variant="panel"):
354
- gr.Markdown("### Sources")
355
- sources_textbox = gr.Markdown(show_label=False)
356
-
357
- dropdown_sources = gr.inputs.Dropdown(
358
- ["IPCC", "IPBES","IPCC and IPBES"],
359
- default="IPCC",
360
- label="Select reports",
361
- )
362
- ask.submit(
363
- fn=chat,
364
- inputs=[
365
- user_id_state,
366
- ask,
367
- state,
368
- dropdown_sources
369
-
370
- ],
371
- outputs=[chatbot, state, sources_textbox],
372
- )
373
- ask.submit(reset_textbox, [], [ask])
374
-
375
- ask_examples_hidden.change(
376
- fn=chat,
377
- inputs=[
378
- user_id_state,
379
- ask_examples_hidden,
380
- state,
381
- dropdown_sources
382
- ],
383
- outputs=[chatbot, state, sources_textbox],
384
- )
385
 
386
 
387
- with gr.Row():
388
- with gr.Column(scale=1):
389
- gr.Markdown(
390
- """
391
- <p><b>Climate change and environmental disruptions have become some of the most pressing challenges facing our planet today</b>. As global temperatures rise and ecosystems suffer, it is essential for individuals to understand the gravity of the situation in order to make informed decisions and advocate for appropriate policy changes.</p>
392
- <p>However, comprehending the vast and complex scientific information can be daunting, as the scientific consensus references, such as <b>the Intergovernmental Panel on Climate Change (IPCC) reports, span thousands of pages</b>. To bridge this gap and make climate science more accessible, we introduce <b>ClimateQ&A as a tool to distill expert-level knowledge into easily digestible insights about climate science.</b></p>
393
- <div class="tip-box">
394
- <div class="tip-box-title">
395
- <span class="light-bulb" role="img" aria-label="Light Bulb">💡</span>
396
- How does ClimateQ&A work?
397
- </div>
398
- ClimateQ&A harnesses modern OCR techniques to parse and preprocess IPCC reports. By leveraging state-of-the-art question-answering algorithms, <i>ClimateQ&A is able to sift through the extensive collection of climate scientific reports and identify relevant passages in response to user inquiries</i>. Furthermore, the integration of the ChatGPT API allows ClimateQ&A to present complex data in a user-friendly manner, summarizing key points and facilitating communication of climate science to a wider audience.
399
- </div>
400
 
401
- <div class="warning-box">
402
- Version 0.2-beta - This tool is under active development
403
- </div>
404
 
405
 
406
- """
407
- )
408
-
409
- with gr.Column(scale=1):
410
- gr.Markdown("![](https://i.postimg.cc/fLvsvMzM/Untitled-design-5.png)")
411
- gr.Markdown("*Source : IPCC AR6 - Synthesis Report of the IPCC 6th assessment report (AR6)*")
412
-
413
- gr.Markdown("## How to use ClimateQ&A")
414
- with gr.Row():
415
- with gr.Column(scale=1):
416
- gr.Markdown(
417
- """
418
- ### 💪 Getting started
419
- - In the chatbot section, simply type your climate-related question, and ClimateQ&A will provide an answer with references to relevant IPCC reports.
420
- - ClimateQ&A retrieves specific passages from the IPCC reports to help answer your question accurately.
421
- - Source information, including page numbers and passages, is displayed on the right side of the screen for easy verification.
422
- - Feel free to ask follow-up questions within the chatbot for a more in-depth understanding.
423
- - ClimateQ&A integrates multiple sources (IPCC and IPBES, … ) to cover various aspects of environmental science, such as climate change and biodiversity. See all sources used below.
424
- """
425
- )
426
- with gr.Column(scale=1):
427
- gr.Markdown(
428
- """
429
- ### ⚠️ Limitations
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
430
  <div class="warning-box">
431
- <ul>
432
- <li>Please note that, like any AI, the model may occasionally generate an inaccurate or imprecise answer. Always refer to the provided sources to verify the validity of the information given. If you find any issues with the response, kindly provide feedback to help improve the system.</li>
433
- <li>ClimateQ&A is specifically designed for climate-related inquiries. If you ask a non-environmental question, the chatbot will politely remind you that its focus is on climate and environmental issues.</li>
434
  </div>
 
 
435
  """
436
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
437
 
438
- gr.Markdown("## 🙏 Feedback and feature requests")
439
- gr.Markdown(
 
 
 
 
 
440
  """
441
- ### Beta test
442
- - ClimateQ&A welcomes community contributions. To participate, head over to the Community Tab and create a "New Discussion" to ask questions and share your insights.
443
- - Provide feedback through email, letting us know which insights you found accurate, useful, or not. Your input will help us improve the platform.
444
- - Only a few sources (see below) are integrated (all IPCC, IPBES), if you are a climate science researcher and net to sift through another report, please let us know.
445
-
446
- If you need us to ask another climate science report or ask any question, contact us at <b>[email protected]</b>
447
- """
448
- )
449
  # with gr.Row():
450
  # with gr.Column(scale=1):
451
  # gr.Markdown("### Feedbacks")
@@ -475,50 +531,49 @@ Version 0.2-beta - This tool is under active development
475
  # openai_api_key_textbox.change(set_openai_api_key, inputs=[openai_api_key_textbox])
476
  # openai_api_key_textbox.submit(set_openai_api_key, inputs=[openai_api_key_textbox])
477
 
478
- gr.Markdown(
479
- """
480
-
481
-
482
- ## 📚 Sources
483
- | Source | Report | URL | Number of pages | Release date |
484
- | --- | --- | --- | --- | --- |
485
- IPCC | Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of the WGI to the AR6 of the IPCC. | https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM.pdf | 32 | 2021
486
- IPCC | Full Report. In: Climate Change 2021: The Physical Science Basis. Contribution of the WGI to the AR6 of the IPCC. | https://report.ipcc.ch/ar6/wg1/IPCC_AR6_WGI_FullReport.pdf | 2409 | 2021
487
- IPCC | Technical Summary. In: Climate Change 2021: The Physical Science Basis. Contribution of the WGI to the AR6 of the IPCC. | https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_TS.pdf | 112 | 2021
488
- IPCC | Summary for Policymakers. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of the WGII to the AR6 of the IPCC. | https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_SummaryForPolicymakers.pdf | 34 | 2022
489
- IPCC | Technical Summary. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of the WGII to the AR6 of the IPCC. | https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_TechnicalSummary.pdf | 84 | 2022
490
- IPCC | Full Report. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of the WGII to the AR6 of the IPCC. | https://report.ipcc.ch/ar6/wg2/IPCC_AR6_WGII_FullReport.pdf | 3068 | 2022
491
- IPCC | Summary for Policymakers. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC. | https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_SummaryForPolicymakers.pdf | 50 | 2022
492
- IPCC | Technical Summary. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC. | https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_TechnicalSummary.pdf | 102 | 2022
493
- IPCC | Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC. | https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf | 2258 | 2022
494
- IPCC | Summary for Policymakers. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. | https://www.ipcc.ch/site/assets/uploads/sites/2/2022/06/SPM_version_report_LR.pdf | 24 | 2018
495
- IPCC | Summary for Policymakers. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. | https://www.ipcc.ch/site/assets/uploads/sites/4/2022/11/SRCCL_SPM.pdf | 36 | 2019
496
- IPCC | Summary for Policymakers. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. | https://www.ipcc.ch/site/assets/uploads/sites/3/2022/03/01_SROCC_SPM_FINAL.pdf | 36 | 2019
497
- IPCC | Technical Summary. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. | https://www.ipcc.ch/site/assets/uploads/sites/3/2022/03/02_SROCC_TS_FINAL.pdf | 34 | 2019
498
- IPCC | Chapter 1 - Framing and Context of the Report. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. | https://www.ipcc.ch/site/assets/uploads/sites/3/2022/03/03_SROCC_Ch01_FINAL.pdf | 60 | 2019
499
- IPCC | Chapter 2 - High Mountain Areas. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. | https://www.ipcc.ch/site/assets/uploads/sites/3/2022/03/04_SROCC_Ch02_FINAL.pdf | 72 | 2019
500
- IPCC | Chapter 3 - Polar Regions. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. | https://www.ipcc.ch/site/assets/uploads/sites/3/2022/03/05_SROCC_Ch03_FINAL.pdf | 118 | 2019
501
- IPCC | Chapter 4 - Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. | https://www.ipcc.ch/site/assets/uploads/sites/3/2022/03/06_SROCC_Ch04_FINAL.pdf | 126 | 2019
502
- IPCC | Chapter 5 - Changing Ocean, Marine Ecosystems, and Dependent Communities. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. | https://www.ipcc.ch/site/assets/uploads/sites/3/2022/03/07_SROCC_Ch05_FINAL.pdf | 142 | 2019
503
- IPCC | Chapter 6 - Extremes, Abrupt Changes and Managing Risk. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. | https://www.ipcc.ch/site/assets/uploads/sites/3/2022/03/08_SROCC_Ch06_FINAL.pdf | 68 | 2019
504
- IPCC | Cross-Chapter Box 9: Integrative Cross-Chapter Box on Low-Lying Islands and Coasts. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. | https://www.ipcc.ch/site/assets/uploads/sites/3/2019/11/11_SROCC_CCB9-LLIC_FINAL.pdf | 18 | 2019
505
- IPCC | Annex I: Glossary [Weyer, N.M. (ed.)]. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. | https://www.ipcc.ch/site/assets/uploads/sites/3/2022/03/10_SROCC_AnnexI-Glossary_FINAL.pdf | 28 | 2019
506
- IPBES | Full Report. Global assessment report on biodiversity and ecosystem services of the IPBES. | https://zenodo.org/record/6417333/files/202206_IPBES%20GLOBAL%20REPORT_FULL_DIGITAL_MARCH%202022.pdf | 1148 | 2019
507
- IPBES | Summary for Policymakers. Global assessment report on biodiversity and ecosystem services of the IPBES (Version 1). | https://zenodo.org/record/3553579/files/ipbes_global_assessment_report_summary_for_policymakers.pdf | 60 | 2019
508
- IPBES | Full Report. Thematic assessment of the sustainable use of wild species of the IPBES. | https://zenodo.org/record/7755805/files/IPBES_ASSESSMENT_SUWS_FULL_REPORT.pdf | 1008 | 2022
509
- IPBES | Summary for Policymakers. Summary for policymakers of the thematic assessment of the sustainable use of wild species of the IPBES. | https://zenodo.org/record/7411847/files/EN_SPM_SUSTAINABLE%20USE%20OF%20WILD%20SPECIES.pdf | 44 | 2022
510
- IPBES | Full Report. Regional Assessment Report on Biodiversity and Ecosystem Services for Africa. | https://zenodo.org/record/3236178/files/ipbes_assessment_report_africa_EN.pdf | 494 | 2018
511
- IPBES | Summary for Policymakers. Regional Assessment Report on Biodiversity and Ecosystem Services for Africa. | https://zenodo.org/record/3236189/files/ipbes_assessment_spm_africa_EN.pdf | 52 | 2018
512
- IPBES | Full Report. Regional Assessment Report on Biodiversity and Ecosystem Services for the Americas. | https://zenodo.org/record/3236253/files/ipbes_assessment_report_americas_EN.pdf | 660 | 2018
513
- IPBES | Summary for Policymakers. Regional Assessment Report on Biodiversity and Ecosystem Services for the Americas. | https://zenodo.org/record/3236292/files/ipbes_assessment_spm_americas_EN.pdf | 44 | 2018
514
- IPBES | Full Report. Regional Assessment Report on Biodiversity and Ecosystem Services for Asia and the Pacific. | https://zenodo.org/record/3237374/files/ipbes_assessment_report_ap_EN.pdf | 616 | 2018
515
- IPBES | Summary for Policymakers. Regional Assessment Report on Biodiversity and Ecosystem Services for Asia and the Pacific. | https://zenodo.org/record/3237383/files/ipbes_assessment_spm_ap_EN.pdf | 44 | 2018
516
- IPBES | Full Report. Regional Assessment Report on Biodiversity and Ecosystem Services for Europe and Central Asia. | https://zenodo.org/record/3237429/files/ipbes_assessment_report_eca_EN.pdf | 894 | 2018
517
- IPBES | Summary for Policymakers. Regional Assessment Report on Biodiversity and Ecosystem Services for Europe and Central Asia. | https://zenodo.org/record/3237468/files/ipbes_assessment_spm_eca_EN.pdf | 52 | 2018
518
- IPBES | Full Report. Assessment Report on Land Degradation and Restoration. | https://zenodo.org/record/3237393/files/ipbes_assessment_report_ldra_EN.pdf | 748 | 2018
519
- IPBES | Summary for Policymakers. Assessment Report on Land Degradation and Restoration. | https://zenodo.org/record/3237393/files/ipbes_assessment_report_ldra_EN.pdf | 48 | 2018
520
-
521
- ## 🛢️ Carbon Footprint
522
 
523
  Carbon emissions were measured during the development and inference process using CodeCarbon [https://github.com/mlco2/codecarbon](https://github.com/mlco2/codecarbon)
524
 
@@ -531,24 +586,10 @@ Carbon emissions were measured during the development and inference process usin
531
 
532
  Carbon Emissions are **relatively low but not negligible** compared to other usages: one question asked to ClimateQ&A is around 0.482gCO2e - equivalent to 2.2m by car (https://datagir.ademe.fr/apps/impact-co2/)
533
  Or around 2 to 4 times more than a typical Google search.
534
-
535
- ## 📧 Contact
536
- This tool has been developed by the R&D lab at **Ekimetrics** (Jean Lelong, Nina Achache, Gabriel Olympie, Nicolas Chesneau, Natalia De la Calzada, Théo Alves Da Costa)
537
-
538
- If you have any questions or feature requests, please feel free to reach us out at <b>[email protected]</b>.
539
-
540
- ## 💻 Developers
541
- For developers, the methodology used is detailed below :
542
-
543
- - Extract individual paragraphs from scientific reports (e.g., IPCC, IPBES) using OCR techniques and open sources algorithms
544
- - Use Haystack to compute semantically representative embeddings for each paragraph using a sentence transformers model (https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-dot-v1). 
545
- - Store all the embeddings in a FAISS Flat index. 
546
- - Reformulate each user query to be as specific as possible and compute its embedding. 
547
- - Retrieve up to 10 semantically closest paragraphs (using dot product similarity) from all available scientific reports. 
548
- - Provide these paragraphs as context for GPT-Turbo's answer in a system message. 
549
  """
550
  )
551
 
552
  demo.queue(concurrency_count=16)
553
 
554
- demo.launch()
 
 
1
  import gradio as gr
 
 
 
2
  import pandas as pd
3
+ import numpy as np
4
  import os
5
+ from datetime import datetime
6
+
7
  from utils import (
8
  make_pairs,
9
  set_openai_api_key,
10
  create_user_id,
11
  to_completion,
12
  )
13
+
 
14
  from azure.storage.fileshare import ShareServiceClient
15
 
16
+ # Langchain
17
+ from langchain.embeddings import HuggingFaceEmbeddings
18
+ from langchain.schema import AIMessage, HumanMessage
19
+ from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
20
+
21
+ # ClimateQ&A imports
22
+ from climateqa.llm import get_llm
23
+ from climateqa.chains import load_climateqa_chain
24
+ from climateqa.vectorstore import get_pinecone_vectorstore
25
+ from climateqa.retriever import ClimateQARetriever
26
+ from climateqa.prompts import audience_prompts
27
+
28
+ # Load environment variables in local mode
29
  try:
30
  from dotenv import load_dotenv
31
  load_dotenv()
32
  except:
33
  pass
34
 
35
+ # Set up Gradio Theme
36
  theme = gr.themes.Soft(
37
  primary_hue="sky",
38
  font=[gr.themes.GoogleFont("Poppins"), "ui-sans-serif", "system-ui", "sans-serif"],
39
  )
40
 
41
+ init_prompt = ""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
43
  system_template = {
44
  "role": "system",
45
  "content": init_prompt,
46
  }
47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
 
49
+ # credential = {
50
+ # "account_key": os.environ["account_key"],
51
+ # "account_name": os.environ["account_name"],
52
+ # }
53
+
54
+ # account_url = os.environ["account_url"]
55
+ # file_share_name = "climategpt"
56
+ # service = ShareServiceClient(account_url=account_url, credential=credential)
57
+ # share_client = service.get_share_client(file_share_name)
 
 
 
 
58
 
 
 
 
 
59
  user_id = create_user_id(10)
60
 
61
 
62
+ #---------------------------------------------------------------------------
63
+ # ClimateQ&A core functions
64
+ #---------------------------------------------------------------------------
65
 
66
+ # Create embeddings function and LLM
67
+ embeddings_function = HuggingFaceEmbeddings(model_name = "sentence-transformers/multi-qa-mpnet-base-dot-v1")
68
+ llm = get_llm(max_tokens = 1024,temperature = 0.0,verbose = True,streaming = False,
69
+ callbacks=[StreamingStdOutCallbackHandler()],
70
+ )
71
+
72
+ # Create vectorstore and retriever
73
+ vectorstore = get_pinecone_vectorstore(embeddings_function)
74
+ retriever = ClimateQARetriever(vectorstore=vectorstore,sources = ["IPCC"],k_summary = 3,k_total = 10)
75
+ chain = load_climateqa_chain(retriever,llm)
76
+
77
+
78
+ #---------------------------------------------------------------------------
79
+ # ClimateQ&A Streaming
80
+ # From https://github.com/gradio-app/gradio/issues/5345
81
+ #---------------------------------------------------------------------------
82
+
83
+ # from langchain.callbacks.base import BaseCallbackHandler
84
+ # from queue import Queue, Empty
85
+ # from threading import Thread
86
+ # from collections.abc import Generator
87
+
88
+ # class QueueCallback(BaseCallbackHandler):
89
+ # """Callback handler for streaming LLM responses to a queue."""
90
+
91
+ # def __init__(self, q):
92
+ # self.q = q
93
+
94
+ # def on_llm_new_token(self, token: str, **kwargs: any) -> None:
95
+ # self.q.put(token)
96
+
97
+ # def on_llm_end(self, *args, **kwargs: any) -> None:
98
+ # return self.q.empty()
99
+
100
+
101
+ # def stream(input_text) -> Generator:
102
+ # # Create a Queue
103
+ # q = Queue()
104
+ # job_done = object()
105
+
106
+ # llm = get_llm(max_tokens = 1024,temperature = 0.0,verbose = True,streaming = True,
107
+ # callbacks=[QueueCallback(q)],
108
+ # )
109
+
110
+ # chain = load_climateqa_chain(retriever,llm)
111
+
112
+ # # Create a funciton to call - this will run in a thread
113
+ # def task():
114
+ # answer = chain({"query":input_text,"audience":"expert climate scientist"})
115
+ # q.put(job_done)
116
+
117
+ # # Create a thread and start the function
118
+ # t = Thread(target=task)
119
+ # t.start()
120
+
121
+ # content = ""
122
+
123
+ # # Get each new token from the queue and yield for our generator
124
+ # while True:
125
+ # try:
126
+ # next_token = q.get(True, timeout=1)
127
+ # if next_token is job_done:
128
+ # break
129
+ # content += next_token
130
+ # yield next_token, content
131
+ # except Empty:
132
+ # continue
133
+
134
+
135
+ def answer_user(message,history):
136
+ return message, history + [[message, None]]
137
+
138
+
139
+ def answer_bot(message,history):
140
+ print("YO",message,history)
141
+ # history_langchain_format = []
142
+ # for human, ai in history:
143
+ # history_langchain_format.append(HumanMessage(content=human))
144
+ # history_langchain_format.append(AIMessage(content=ai))
145
+ # history_langchain_format.append(HumanMessage(content=message)
146
+ # for next_token, content in stream(message):
147
+ # yield(content)
148
+ output = chain({"query":message,"audience":"expert climate scientist"})
149
+ question = output["question"]
150
+ sources = output["source_documents"]
151
+
152
+ if len(sources) > 0:
153
+ sources_text = []
154
+ for i, d in enumerate(sources, 1):
155
+ sources_text.append(make_html_source(d,i))
156
+ sources_text = "\n\n".join([f"Query used for retrieval:\n{question}"] + sources_text)
157
+
158
+ history[-1][1] = output["answer"]
159
+ return "",history,sources_text
160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161
  else:
162
+ sources_text = "⚠️ No relevant passages found in the climate science reports (IPCC and IPBES)"
163
+ complete_response = "**⚠️ No relevant passages found in the climate science reports (IPCC and IPBES), you may want to ask a more specific question (specifying your question on climate issues).**"
164
+ history[-1][1] = complete_response
165
+ return "",history, sources_text
166
+
167
+
168
+ #---------------------------------------------------------------------------
169
+ # ClimateQ&A core functions
170
+ #---------------------------------------------------------------------------
171
 
172
 
173
  def make_html_source(source,i):
174
+ meta = source.metadata
175
+ content = source.page_content.split(":",1)[1].strip()
176
  return f"""
177
  <div class="card">
178
  <div class="card-content">
179
+ <h2>Doc {i} - {meta['short_name']} - Page {int(meta['page_number'])}</h2>
180
+ <p>{content}</p>
181
  </div>
182
  <div class="card-footer">
183
  <span>{meta['name']}</span>
184
+ <a href="{meta['url']}#page={int(meta['page_number'])}" target="_blank" class="pdf-link">
185
  <span role="img" aria-label="Open PDF">🔗</span>
186
  </a>
187
  </div>
 
190
 
191
 
192
 
193
+ # def chat(
194
+ # user_id: str,
195
+ # query: str,
196
+ # history: list = [system_template],
197
+ # report_type: str = "IPCC",
198
+ # threshold: float = 0.555,
199
+ # ) -> tuple:
200
+ # """retrieve relevant documents in the document store then query gpt-turbo
201
+
202
+ # Args:
203
+ # query (str): user message.
204
+ # history (list, optional): history of the conversation. Defaults to [system_template].
205
+ # report_type (str, optional): should be "All available" or "IPCC only". Defaults to "All available".
206
+ # threshold (float, optional): similarity threshold, don't increase more than 0.568. Defaults to 0.56.
207
+
208
+ # Yields:
209
+ # tuple: chat gradio format, chat openai format, sources used.
210
+ # """
211
+
212
+ # if report_type not in ["IPCC","IPBES"]: report_type = "all"
213
+ # print("Searching in ",report_type," reports")
214
+ # # if report_type == "All available":
215
+ # # retriever = retrieve_all
216
+ # # elif report_type == "IPCC only":
217
+ # # retriever = retrieve_giec
218
+ # # else:
219
+ # # raise Exception("report_type arg should be in (All available, IPCC only)")
220
+
221
+ # reformulated_query = openai.Completion.create(
222
+ # engine="EkiGPT",
223
+ # prompt=get_reformulation_prompt(query),
224
+ # temperature=0,
225
+ # max_tokens=128,
226
+ # stop=["\n---\n", "<|im_end|>"],
227
+ # )
228
+ # reformulated_query = reformulated_query["choices"][0]["text"]
229
+ # reformulated_query, language = reformulated_query.split("\n")
230
+ # language = language.split(":")[1].strip()
231
+
232
+
233
+ # sources = retrieve_with_summaries(reformulated_query,retriever,k_total = 10,k_summary = 3,as_dict = True,source = report_type.lower(),threshold = threshold)
234
+ # response_retriever = {
235
+ # "language":language,
236
+ # "reformulated_query":reformulated_query,
237
+ # "query":query,
238
+ # "sources":sources,
239
+ # }
240
+
241
+ # # docs = [d for d in retriever.retrieve(query=reformulated_query, top_k=10) if d.score > threshold]
242
+ # messages = history + [{"role": "user", "content": query}]
243
+
244
+ # if len(sources) > 0:
245
+ # docs_string = []
246
+ # docs_html = []
247
+ # for i, d in enumerate(sources, 1):
248
+ # docs_string.append(f"📃 Doc {i}: {d['meta']['short_name']} page {d['meta']['page_number']}\n{d['content']}")
249
+ # docs_html.append(make_html_source(d,i))
250
+ # docs_string = "\n\n".join([f"Query used for retrieval:\n{reformulated_query}"] + docs_string)
251
+ # docs_html = "\n\n".join([f"Query used for retrieval:\n{reformulated_query}"] + docs_html)
252
+ # messages.append({"role": "system", "content": f"{sources_prompt}\n\n{docs_string}\n\nAnswer in {language}:"})
253
+
254
+
255
+ # response = openai.Completion.create(
256
+ # engine="EkiGPT",
257
+ # prompt=to_completion(messages),
258
+ # temperature=0, # deterministic
259
+ # stream=True,
260
+ # max_tokens=1024,
261
+ # )
262
+
263
+ # complete_response = ""
264
+ # messages.pop()
265
+
266
+ # messages.append({"role": "assistant", "content": complete_response})
267
+ # timestamp = str(datetime.now().timestamp())
268
+ # file = user_id[0] + timestamp + ".json"
269
+ # logs = {
270
+ # "user_id": user_id[0],
271
+ # "prompt": query,
272
+ # "retrived": sources,
273
+ # "report_type": report_type,
274
+ # "prompt_eng": messages[0],
275
+ # "answer": messages[-1]["content"],
276
+ # "time": timestamp,
277
+ # }
278
+ # log_on_azure(file, logs, share_client)
279
+
280
+ # for chunk in response:
281
+ # if (chunk_message := chunk["choices"][0].get("text")) and chunk_message != "<|im_end|>":
282
+ # complete_response += chunk_message
283
+ # messages[-1]["content"] = complete_response
284
+ # gradio_format = make_pairs([a["content"] for a in messages[1:]])
285
+ # yield gradio_format, messages, docs_html
286
+
287
+ # else:
288
+ # docs_string = "⚠️ No relevant passages found in the climate science reports (IPCC and IPBES)"
289
+ # complete_response = "**⚠️ No relevant passages found in the climate science reports (IPCC and IPBES), you may want to ask a more specific question (specifying your question on climate issues).**"
290
+ # messages.append({"role": "assistant", "content": complete_response})
291
+ # gradio_format = make_pairs([a["content"] for a in messages[1:]])
292
+ # yield gradio_format, messages, docs_string
293
 
294
 
295
  def save_feedback(feed: str, user_id):
 
314
  file_client.upload_file(str(logs))
315
 
316
 
 
 
317
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
318
 
319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
320
 
321
+ # --------------------------------------------------------------------
322
+ # Gradio
323
+ # --------------------------------------------------------------------
324
 
325
 
326
+
327
+
328
+
329
+ with gr.Blocks(title="🌍 Climate Q&A", css="style.css", theme=theme) as demo:
330
+ # user_id_state = gr.State([user_id])
331
+
332
+ # Gradio
333
+ gr.Markdown("<h1><center>Climate Q&A 🌍</center></h1>")
334
+ gr.Markdown("<h4><center>Ask climate-related questions to the IPCC and IPBES reports using AI</center></h4>")
335
+
336
+ with gr.Tab("💬 Chatbot"):
337
+
338
+ with gr.Row():
339
+ with gr.Column(scale=2):
340
+ # state = gr.State([system_template])
341
+ bot = gr.Chatbot(height=400)
342
+
343
+ with gr.Row():
344
+ with gr.Column(scale = 7):
345
+ textbox=gr.Textbox(placeholder="Ask me a question about climate change or biodiversity in any language, and press Enter",show_label=False)
346
+ with gr.Column(scale = 1):
347
+ submit_button = gr.Button("Submit")
348
+
349
+ examples_hidden = gr.Textbox(elem_id="hidden-message")
350
+
351
+ examples_questions = gr.Examples(
352
+ [
353
+ "Is climate change caused by humans?",
354
+ "What evidence do we have of climate change?",
355
+ "What are the impacts of climate change?",
356
+ "Can climate change be reversed?",
357
+ "What is the difference between climate change and global warming?",
358
+ "What can individuals do to address climate change?",
359
+ "What are the main causes of climate change?",
360
+ "What is the Paris Agreement and why is it important?",
361
+ "Which industries have the highest GHG emissions?",
362
+ "Is climate change a hoax created by the government or environmental organizations?",
363
+ "What is the relationship between climate change and biodiversity loss?",
364
+ "What is the link between gender equality and climate change?",
365
+ "Is the impact of climate change really as severe as it is claimed to be?",
366
+ "What is the impact of rising sea levels?",
367
+ "What are the different greenhouse gases (GHG)?",
368
+ "What is the warming power of methane?",
369
+ "What is the jet stream?",
370
+ "What is the breakdown of carbon sinks?",
371
+ "How do the GHGs work ? Why does temperature increase ?",
372
+ "What is the impact of global warming on ocean currents?",
373
+ "How much warming is possible in 2050?",
374
+ "What is the impact of climate change in Africa?",
375
+ "Will climate change accelerate diseases and epidemics like COVID?",
376
+ "What are the economic impacts of climate change?",
377
+ "How much is the cost of inaction ?",
378
+ "What is the relationship between climate change and poverty?",
379
+ "What are the most effective strategies and technologies for reducing greenhouse gas (GHG) emissions?",
380
+ "Is economic growth possible? What do you think about degrowth?",
381
+ "Will technology save us?",
382
+ "Is climate change a natural phenomenon ?",
383
+ "Is climate change really happening or is it just a natural fluctuation in Earth's temperature?",
384
+ "Is the scientific consensus on climate change really as strong as it is claimed to be?",
385
+ ],
386
+ [examples_hidden],
387
+ examples_per_page=10,
388
+ )
389
+
390
+ with gr.Column(scale=1, variant="panel"):
391
+
392
+ dropdown_sources = gr.CheckboxGroup(
393
+ ["IPCC", "IPBES"],
394
+ label="Select reports",
395
+ value = ["IPCC"],
396
+ )
397
+
398
+ dropdown_audience = gr.Dropdown(
399
+ ["Children","Adult","Experts"],
400
+ label="Select audience",
401
+ value="Experts",
402
+ )
403
+
404
+ gr.Markdown("### Sources")
405
+ sources_textbox = gr.Markdown(show_label=False)
406
+
407
+ # textbox.submit(predict_climateqa,[textbox,bot],[None,bot,sources_textbox])
408
+
409
+ textbox.submit(answer_user, [textbox, bot], [textbox, bot], queue=False).then(
410
+ answer_bot, [textbox,bot], [textbox,bot,sources_textbox]
411
+ )
412
+ examples_hidden.change(answer_user, [examples_hidden, bot], [textbox, bot], queue=False).then(
413
+ answer_bot, [textbox,bot], [textbox,bot,sources_textbox]
414
+ )
415
+
416
+ submit_button.click(answer_user, [textbox, bot], [textbox, bot], queue=False).then(
417
+ answer_bot, [textbox,bot], [textbox,bot,sources_textbox]
418
+ )
419
+
420
+
421
+
422
+
423
+
424
+
425
+
426
+
427
+
428
+
429
+
430
+
431
+
432
+
433
+ #---------------------------------------------------------------------------------------
434
+ # OTHER TABS
435
+ #---------------------------------------------------------------------------------------
436
+
437
+
438
+ with gr.Tab("ℹ️ About ClimateQ&A"):
439
+ with gr.Row():
440
+ with gr.Column(scale=1):
441
+ gr.Markdown(
442
+ """
443
+ <p><b>Climate change and environmental disruptions have become some of the most pressing challenges facing our planet today</b>. As global temperatures rise and ecosystems suffer, it is essential for individuals to understand the gravity of the situation in order to make informed decisions and advocate for appropriate policy changes.</p>
444
+ <p>However, comprehending the vast and complex scientific information can be daunting, as the scientific consensus references, such as <b>the Intergovernmental Panel on Climate Change (IPCC) reports, span thousands of pages</b>. To bridge this gap and make climate science more accessible, we introduce <b>ClimateQ&A as a tool to distill expert-level knowledge into easily digestible insights about climate science.</b></p>
445
+ <div class="tip-box">
446
+ <div class="tip-box-title">
447
+ <span class="light-bulb" role="img" aria-label="Light Bulb">💡</span>
448
+ How does ClimateQ&A work?
449
+ </div>
450
+ ClimateQ&A harnesses modern OCR techniques to parse and preprocess IPCC reports. By leveraging state-of-the-art question-answering algorithms, <i>ClimateQ&A is able to sift through the extensive collection of climate scientific reports and identify relevant passages in response to user inquiries</i>. Furthermore, the integration of the ChatGPT API allows ClimateQ&A to present complex data in a user-friendly manner, summarizing key points and facilitating communication of climate science to a wider audience.
451
+ </div>
452
+
453
  <div class="warning-box">
454
+ Version 0.2-beta - This tool is under active development
 
 
455
  </div>
456
+
457
+
458
  """
459
+ )
460
+
461
+ with gr.Column(scale=1):
462
+ gr.Markdown("![](https://i.postimg.cc/fLvsvMzM/Untitled-design-5.png)")
463
+ gr.Markdown("*Source : IPCC AR6 - Synthesis Report of the IPCC 6th assessment report (AR6)*")
464
+
465
+ gr.Markdown("## How to use ClimateQ&A")
466
+ with gr.Row():
467
+ with gr.Column(scale=1):
468
+ gr.Markdown(
469
+ """
470
+ ### 💪 Getting started
471
+ - In the chatbot section, simply type your climate-related question, and ClimateQ&A will provide an answer with references to relevant IPCC reports.
472
+ - ClimateQ&A retrieves specific passages from the IPCC reports to help answer your question accurately.
473
+ - Source information, including page numbers and passages, is displayed on the right side of the screen for easy verification.
474
+ - Feel free to ask follow-up questions within the chatbot for a more in-depth understanding.
475
+ - You can ask question in any language, ClimateQ&A is multi-lingual !
476
+ - ClimateQ&A integrates multiple sources (IPCC and IPBES, … ) to cover various aspects of environmental science, such as climate change and biodiversity. See all sources used below.
477
+ """
478
+ )
479
+ with gr.Column(scale=1):
480
+ gr.Markdown(
481
+ """
482
+ ### ⚠️ Limitations
483
+ <div class="warning-box">
484
+ <ul>
485
+ <li>Please note that, like any AI, the model may occasionally generate an inaccurate or imprecise answer. Always refer to the provided sources to verify the validity of the information given. If you find any issues with the response, kindly provide feedback to help improve the system.</li>
486
+ <li>ClimateQ&A is specifically designed for climate-related inquiries. If you ask a non-environmental question, the chatbot will politely remind you that its focus is on climate and environmental issues.</li>
487
+ </div>
488
+ """
489
+ )
490
+
491
+
492
+ with gr.Tab("📧 Contact, feedback and feature requests"):
493
+ gr.Markdown(
494
+ """
495
 
496
+ 🤞 For any question or press request, contact Théo Alves Da Costa at <b>[email protected]</b>
497
+
498
+ - ClimateQ&A welcomes community contributions. To participate, head over to the Community Tab and create a "New Discussion" to ask questions and share your insights.
499
+ - Provide feedback through email, letting us know which insights you found accurate, useful, or not. Your input will help us improve the platform.
500
+ - Only a few sources (see below) are integrated (all IPCC, IPBES), if you are a climate science researcher and net to sift through another report, please let us know.
501
+
502
+ *This tool has been developed by the R&D lab at **Ekimetrics** (Jean Lelong, Nina Achache, Gabriel Olympie, Nicolas Chesneau, Natalia De la Calzada, Théo Alves Da Costa)*
503
  """
504
+ )
 
 
 
 
 
 
 
505
  # with gr.Row():
506
  # with gr.Column(scale=1):
507
  # gr.Markdown("### Feedbacks")
 
531
  # openai_api_key_textbox.change(set_openai_api_key, inputs=[openai_api_key_textbox])
532
  # openai_api_key_textbox.submit(set_openai_api_key, inputs=[openai_api_key_textbox])
533
 
534
+ with gr.Tab("📚 Sources"):
535
+ gr.Markdown("""
536
+ | Source | Report | URL | Number of pages | Release date |
537
+ | --- | --- | --- | --- | --- |
538
+ IPCC | Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of the WGI to the AR6 of the IPCC. | https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM.pdf | 32 | 2021
539
+ IPCC | Full Report. In: Climate Change 2021: The Physical Science Basis. Contribution of the WGI to the AR6 of the IPCC. | https://report.ipcc.ch/ar6/wg1/IPCC_AR6_WGI_FullReport.pdf | 2409 | 2021
540
+ IPCC | Technical Summary. In: Climate Change 2021: The Physical Science Basis. Contribution of the WGI to the AR6 of the IPCC. | https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_TS.pdf | 112 | 2021
541
+ IPCC | Summary for Policymakers. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of the WGII to the AR6 of the IPCC. | https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_SummaryForPolicymakers.pdf | 34 | 2022
542
+ IPCC | Technical Summary. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of the WGII to the AR6 of the IPCC. | https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_TechnicalSummary.pdf | 84 | 2022
543
+ IPCC | Full Report. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of the WGII to the AR6 of the IPCC. | https://report.ipcc.ch/ar6/wg2/IPCC_AR6_WGII_FullReport.pdf | 3068 | 2022
544
+ IPCC | Summary for Policymakers. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC. | https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_SummaryForPolicymakers.pdf | 50 | 2022
545
+ IPCC | Technical Summary. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC. | https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_TechnicalSummary.pdf | 102 | 2022
546
+ IPCC | Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC. | https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf | 2258 | 2022
547
+ IPCC | Summary for Policymakers. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. | https://www.ipcc.ch/site/assets/uploads/sites/2/2022/06/SPM_version_report_LR.pdf | 24 | 2018
548
+ IPCC | Summary for Policymakers. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. | https://www.ipcc.ch/site/assets/uploads/sites/4/2022/11/SRCCL_SPM.pdf | 36 | 2019
549
+ IPCC | Summary for Policymakers. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. | https://www.ipcc.ch/site/assets/uploads/sites/3/2022/03/01_SROCC_SPM_FINAL.pdf | 36 | 2019
550
+ IPCC | Technical Summary. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. | https://www.ipcc.ch/site/assets/uploads/sites/3/2022/03/02_SROCC_TS_FINAL.pdf | 34 | 2019
551
+ IPCC | Chapter 1 - Framing and Context of the Report. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. | https://www.ipcc.ch/site/assets/uploads/sites/3/2022/03/03_SROCC_Ch01_FINAL.pdf | 60 | 2019
552
+ IPCC | Chapter 2 - High Mountain Areas. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. | https://www.ipcc.ch/site/assets/uploads/sites/3/2022/03/04_SROCC_Ch02_FINAL.pdf | 72 | 2019
553
+ IPCC | Chapter 3 - Polar Regions. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. | https://www.ipcc.ch/site/assets/uploads/sites/3/2022/03/05_SROCC_Ch03_FINAL.pdf | 118 | 2019
554
+ IPCC | Chapter 4 - Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. | https://www.ipcc.ch/site/assets/uploads/sites/3/2022/03/06_SROCC_Ch04_FINAL.pdf | 126 | 2019
555
+ IPCC | Chapter 5 - Changing Ocean, Marine Ecosystems, and Dependent Communities. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. | https://www.ipcc.ch/site/assets/uploads/sites/3/2022/03/07_SROCC_Ch05_FINAL.pdf | 142 | 2019
556
+ IPCC | Chapter 6 - Extremes, Abrupt Changes and Managing Risk. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. | https://www.ipcc.ch/site/assets/uploads/sites/3/2022/03/08_SROCC_Ch06_FINAL.pdf | 68 | 2019
557
+ IPCC | Cross-Chapter Box 9: Integrative Cross-Chapter Box on Low-Lying Islands and Coasts. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. | https://www.ipcc.ch/site/assets/uploads/sites/3/2019/11/11_SROCC_CCB9-LLIC_FINAL.pdf | 18 | 2019
558
+ IPCC | Annex I: Glossary [Weyer, N.M. (ed.)]. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. | https://www.ipcc.ch/site/assets/uploads/sites/3/2022/03/10_SROCC_AnnexI-Glossary_FINAL.pdf | 28 | 2019
559
+ IPBES | Full Report. Global assessment report on biodiversity and ecosystem services of the IPBES. | https://zenodo.org/record/6417333/files/202206_IPBES%20GLOBAL%20REPORT_FULL_DIGITAL_MARCH%202022.pdf | 1148 | 2019
560
+ IPBES | Summary for Policymakers. Global assessment report on biodiversity and ecosystem services of the IPBES (Version 1). | https://zenodo.org/record/3553579/files/ipbes_global_assessment_report_summary_for_policymakers.pdf | 60 | 2019
561
+ IPBES | Full Report. Thematic assessment of the sustainable use of wild species of the IPBES. | https://zenodo.org/record/7755805/files/IPBES_ASSESSMENT_SUWS_FULL_REPORT.pdf | 1008 | 2022
562
+ IPBES | Summary for Policymakers. Summary for policymakers of the thematic assessment of the sustainable use of wild species of the IPBES. | https://zenodo.org/record/7411847/files/EN_SPM_SUSTAINABLE%20USE%20OF%20WILD%20SPECIES.pdf | 44 | 2022
563
+ IPBES | Full Report. Regional Assessment Report on Biodiversity and Ecosystem Services for Africa. | https://zenodo.org/record/3236178/files/ipbes_assessment_report_africa_EN.pdf | 494 | 2018
564
+ IPBES | Summary for Policymakers. Regional Assessment Report on Biodiversity and Ecosystem Services for Africa. | https://zenodo.org/record/3236189/files/ipbes_assessment_spm_africa_EN.pdf | 52 | 2018
565
+ IPBES | Full Report. Regional Assessment Report on Biodiversity and Ecosystem Services for the Americas. | https://zenodo.org/record/3236253/files/ipbes_assessment_report_americas_EN.pdf | 660 | 2018
566
+ IPBES | Summary for Policymakers. Regional Assessment Report on Biodiversity and Ecosystem Services for the Americas. | https://zenodo.org/record/3236292/files/ipbes_assessment_spm_americas_EN.pdf | 44 | 2018
567
+ IPBES | Full Report. Regional Assessment Report on Biodiversity and Ecosystem Services for Asia and the Pacific. | https://zenodo.org/record/3237374/files/ipbes_assessment_report_ap_EN.pdf | 616 | 2018
568
+ IPBES | Summary for Policymakers. Regional Assessment Report on Biodiversity and Ecosystem Services for Asia and the Pacific. | https://zenodo.org/record/3237383/files/ipbes_assessment_spm_ap_EN.pdf | 44 | 2018
569
+ IPBES | Full Report. Regional Assessment Report on Biodiversity and Ecosystem Services for Europe and Central Asia. | https://zenodo.org/record/3237429/files/ipbes_assessment_report_eca_EN.pdf | 894 | 2018
570
+ IPBES | Summary for Policymakers. Regional Assessment Report on Biodiversity and Ecosystem Services for Europe and Central Asia. | https://zenodo.org/record/3237468/files/ipbes_assessment_spm_eca_EN.pdf | 52 | 2018
571
+ IPBES | Full Report. Assessment Report on Land Degradation and Restoration. | https://zenodo.org/record/3237393/files/ipbes_assessment_report_ldra_EN.pdf | 748 | 2018
572
+ IPBES | Summary for Policymakers. Assessment Report on Land Degradation and Restoration. | https://zenodo.org/record/3237393/files/ipbes_assessment_report_ldra_EN.pdf | 48 | 2018
573
+ """)
574
+
575
+ with gr.Tab("🛢️ Carbon Footprint"):
576
+ gr.Markdown("""
 
577
 
578
  Carbon emissions were measured during the development and inference process using CodeCarbon [https://github.com/mlco2/codecarbon](https://github.com/mlco2/codecarbon)
579
 
 
586
 
587
  Carbon Emissions are **relatively low but not negligible** compared to other usages: one question asked to ClimateQ&A is around 0.482gCO2e - equivalent to 2.2m by car (https://datagir.ademe.fr/apps/impact-co2/)
588
  Or around 2 to 4 times more than a typical Google search.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
589
  """
590
  )
591
 
592
  demo.queue(concurrency_count=16)
593
 
594
+ if __name__ == "__main__":
595
+ demo.launch()
assets/logo4.png ADDED
climateqa/__init__.py ADDED
File without changes
climateqa/chains.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # https://python.langchain.com/docs/modules/chains/how_to/custom_chain
2
+ # Including reformulation of the question in the chain
3
+ import json
4
+
5
+ from langchain import PromptTemplate, LLMChain
6
+ from langchain.chains import RetrievalQAWithSourcesChain
7
+ from langchain.chains import TransformChain, SequentialChain
8
+ from langchain.chains.qa_with_sources import load_qa_with_sources_chain
9
+
10
+ from climateqa.prompts import answer_prompt, reformulation_prompt,audience_prompts
11
+
12
+
13
+ def load_reformulation_chain(llm):
14
+
15
+ prompt = PromptTemplate(
16
+ template = reformulation_prompt,
17
+ input_variables=["query"],
18
+ )
19
+ reformulation_chain = LLMChain(llm = llm,prompt = prompt,output_key="json")
20
+
21
+ # Parse the output
22
+ def parse_output(output):
23
+ query = output["query"]
24
+ json_output = json.loads(output["json"])
25
+ question = json_output.get("question", query)
26
+ language = json_output.get("language", "English")
27
+ return {
28
+ "question": question,
29
+ "language": language,
30
+ }
31
+
32
+ transform_chain = TransformChain(
33
+ input_variables=["json"], output_variables=["question","language"], transform=parse_output
34
+ )
35
+
36
+ reformulation_chain = SequentialChain(chains = [reformulation_chain,transform_chain],input_variables=["query"],output_variables=["question","language"])
37
+ return reformulation_chain
38
+
39
+
40
+
41
+ def load_answer_chain(retriever,llm):
42
+ prompt = PromptTemplate(template=answer_prompt, input_variables=["summaries", "question","audience","language"])
43
+ qa_chain = load_qa_with_sources_chain(llm, chain_type="stuff",prompt = prompt)
44
+
45
+ # This could be improved by providing a document prompt to avoid modifying page_content in the docs
46
+ # See here https://github.com/langchain-ai/langchain/issues/3523
47
+
48
+ answer_chain = RetrievalQAWithSourcesChain(
49
+ combine_documents_chain = qa_chain,
50
+ retriever=retriever,
51
+ return_source_documents = True,
52
+ )
53
+ return answer_chain
54
+
55
+
56
+ def load_climateqa_chain(retriever,llm):
57
+
58
+ reformulation_chain = load_reformulation_chain(llm)
59
+ answer_chain = load_answer_chain(retriever,llm)
60
+
61
+ climateqa_chain = SequentialChain(
62
+ chains = [reformulation_chain,answer_chain],
63
+ input_variables=["query","audience"],
64
+ output_variables=["answer","question","language","source_documents"],
65
+ return_all = True,
66
+ )
67
+ return climateqa_chain
68
+
climateqa/chat.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # LANGCHAIN IMPORTS
2
+ from langchain import PromptTemplate, LLMChain
3
+ from langchain.embeddings import HuggingFaceEmbeddings
4
+ from langchain.chains import RetrievalQAWithSourcesChain
5
+ from langchain.chains.qa_with_sources import load_qa_with_sources_chain
6
+
7
+
8
+ # CLIMATEQA
9
+ from climateqa.retriever import ClimateQARetriever
10
+ from climateqa.vectorstore import get_pinecone_vectorstore
11
+ from climateqa.chains import load_climateqa_chain
12
+
13
+
14
+ class ClimateQA:
15
+ def __init__(self,hf_embedding_model = "sentence-transformers/multi-qa-mpnet-base-dot-v1",
16
+ show_progress_bar = False,batch_size = 1,max_tokens = 1024,**kwargs):
17
+
18
+ self.llm = self.get_llm(max_tokens = max_tokens,**kwargs)
19
+ self.embeddings_function = HuggingFaceEmbeddings(
20
+ model_name=hf_embedding_model,
21
+ encode_kwargs={"show_progress_bar":show_progress_bar,"batch_size":batch_size}
22
+ )
23
+
24
+
25
+
26
+ def get_vectorstore(self):
27
+ pass
28
+
29
+
30
+ def reformulate(self):
31
+ pass
32
+
33
+
34
+ def retrieve(self):
35
+ pass
36
+
37
+
38
+ def ask(self):
39
+ pass
climateqa/llm.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from langchain.chat_models import AzureChatOpenAI
2
+
3
+ # LOAD ENVIRONMENT VARIABLES
4
+ from dotenv import load_dotenv
5
+ import os
6
+ load_dotenv()
7
+
8
+
9
+ def get_llm(max_tokens = 1024,temperature = 0.0,verbose = True,streaming = False, **kwargs):
10
+
11
+ llm = AzureChatOpenAI(
12
+ openai_api_base=os.environ["AZURE_OPENAI_API_BASE_URL"],
13
+ openai_api_version=os.environ["AZURE_OPENAI_API_VERSION"],
14
+ deployment_name=os.environ["AZURE_OPENAI_API_DEPLOYMENT_NAME"],
15
+ openai_api_key=os.environ["AZURE_OPENAI_API_KEY"],
16
+ openai_api_type = "azure",
17
+ max_tokens = max_tokens,
18
+ temperature = temperature,
19
+ verbose = verbose,
20
+ streaming = streaming,
21
+ **kwargs,
22
+ )
23
+ return llm
climateqa/prompts.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ # If the message is not relevant to climate change (like "How are you", "I am 18 years old" or "When was built the eiffel tower"), return N/A
3
+
4
+ reformulation_prompt = """
5
+ Reformulate the following user message to be a short standalone question in English, in the context of an educational discussion about climate change.
6
+ ---
7
+ query: La technologie nous sauvera-t-elle ?
8
+ question: Can technology help humanity mitigate the effects of climate change?
9
+ language: French
10
+ ---
11
+ query: what are our reserves in fossil fuel?
12
+ question: What are the current reserves of fossil fuels and how long will they last?
13
+ language: English
14
+ ---
15
+ query: what are the main causes of climate change?
16
+ question: What are the main causes of climate change in the last century?
17
+ language: English
18
+ ---
19
+
20
+ Output the result as json with two keys "question" and "language"
21
+ query: {query}
22
+ answer:"""
23
+
24
+ system_prompt = """
25
+ You are ClimateQ&A, an AI Assistant created by Ekimetrics, you will act as a climate scientist and answer questions about climate change and biodiversity.
26
+ You are given a question and extracted passages of the IPCC and/or IPBES reports. Provide a clear and structured answer based on the passages provided, the context and the guidelines.
27
+ """
28
+
29
+
30
+ answer_prompt = """
31
+ You are ClimateQ&A, an AI Assistant created by Ekimetrics. You are given a question and extracted passages of the IPCC and/or IPBES reports. Provide a clear and structured answer based on the passages provided, the context and the guidelines.
32
+
33
+ Guidelines:
34
+ - If the passages have useful facts or numbers, use them in your answer.
35
+ - When you use information from a passage, mention where it came from by using [Doc i] at the end of the sentence. i stands for the number of the document.
36
+ - Do not use the sentence 'Doc i says ...' to say where information came from.
37
+ - If the same thing is said in more than one document, you can mention all of them like this: [Doc i, Doc j, Doc k]
38
+ - Do not just summarize each passage one by one. Group your summaries to highlight the key parts in the explanation.
39
+ - If it makes sense, use bullet points and lists to make your answers easier to understand.
40
+ - You do not need to use every passage. Only use the ones that help answer the question.
41
+ - If the documents do not have the information needed to answer the question, just say you do not have enough information.
42
+
43
+ -----------------------
44
+ Passages:
45
+ {summaries}
46
+
47
+ -----------------------
48
+ Question: {question} - Explained to {audience}
49
+ Answer in {language} with the passages citations:
50
+ """
51
+
52
+
53
+ audience_prompts = {
54
+ "children": "6 year old children that don't know anything about science and climate change and need metaphors to learn",
55
+ "general": "the general public who know the basics in science and climate change and want to learn more about it without technical terms. Still use references to passages.",
56
+ "experts": "expert and climate scientists that are not afraid of technical terms",
57
+ }
climateqa/retriever.py ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # https://github.com/langchain-ai/langchain/issues/8623
2
+
3
+ import pandas as pd
4
+
5
+ from langchain.schema.retriever import BaseRetriever, Document
6
+ from langchain.vectorstores.base import VectorStoreRetriever
7
+ from langchain.vectorstores import VectorStore
8
+ from langchain.callbacks.manager import CallbackManagerForRetrieverRun
9
+ from typing import List
10
+ from pydantic import Field
11
+
12
+ class ClimateQARetriever(BaseRetriever):
13
+ vectorstore:VectorStore
14
+ sources:list = ["IPCC","IPBES"]
15
+ threshold:float = 22
16
+ k_summary:int = 3
17
+ k_total:int = 10
18
+ namespace:str = "vectors"
19
+
20
+ def get_relevant_documents(self, query: str) -> List[Document]:
21
+
22
+ # Check if all elements in the list are either IPCC or IPBES
23
+ assert isinstance(self.sources,list)
24
+ assert all([x in ["IPCC","IPBES"] for x in self.sources])
25
+ assert self.k_total > self.k_summary, "k_total should be greater than k_summary"
26
+
27
+ # Prepare base search kwargs
28
+ filters = {
29
+ "source": { "$in":self.sources},
30
+ }
31
+
32
+ # Search for k_summary documents in the summaries dataset
33
+ filters_summaries = {
34
+ **filters,
35
+ "report_type": { "$in":["SPM","TS"]},
36
+ }
37
+ docs_summaries = self.vectorstore.similarity_search_with_score(query=query,namespace = self.namespace,filter = filters_summaries,k = self.k_summary)
38
+ docs_summaries = [x for x in docs_summaries if x[1] > self.threshold]
39
+
40
+ # Search for k_total - k_summary documents in the full reports dataset
41
+ filters_full = {
42
+ **filters,
43
+ "report_type": { "$nin":["SPM","TS"]},
44
+ }
45
+ k_full = self.k_total - len(docs_summaries)
46
+ docs_full = self.vectorstore.similarity_search_with_score(query=query,namespace = self.namespace,filter = filters_full,k = k_full)
47
+
48
+ # Concatenate documents
49
+ docs = docs_summaries + docs_full
50
+
51
+ # Filter if scores are below threshold
52
+ docs = [x for x in docs if x[1] > self.threshold]
53
+
54
+ # Add score to metadata
55
+ results = []
56
+ for i,(doc,score) in enumerate(docs):
57
+ doc.metadata["similarity_score"] = score
58
+ doc.metadata["content"] = doc.page_content
59
+ doc.metadata["page_number"] = int(doc.metadata["page_number"])
60
+ doc.page_content = f"""Doc {i+1} - {doc.metadata['short_name']}: {doc.page_content}"""
61
+ results.append(doc)
62
+
63
+ return results
64
+
65
+
66
+
67
+
68
+
69
+ # def filter_summaries(df,k_summary = 3,k_total = 10):
70
+ # # assert source in ["IPCC","IPBES","ALL"], "source arg should be in (IPCC,IPBES,ALL)"
71
+
72
+ # # # Filter by source
73
+ # # if source == "IPCC":
74
+ # # df = df.loc[df["source"]=="IPCC"]
75
+ # # elif source == "IPBES":
76
+ # # df = df.loc[df["source"]=="IPBES"]
77
+ # # else:
78
+ # # pass
79
+
80
+ # # Separate summaries and full reports
81
+ # df_summaries = df.loc[df["report_type"].isin(["SPM","TS"])]
82
+ # df_full = df.loc[~df["report_type"].isin(["SPM","TS"])]
83
+
84
+ # # Find passages from summaries dataset
85
+ # passages_summaries = df_summaries.head(k_summary)
86
+
87
+ # # Find passages from full reports dataset
88
+ # passages_fullreports = df_full.head(k_total - len(passages_summaries))
89
+
90
+ # # Concatenate passages
91
+ # passages = pd.concat([passages_summaries,passages_fullreports],axis = 0,ignore_index = True)
92
+ # return passages
93
+
94
+
95
+
96
+
97
+ # def retrieve_with_summaries(query,retriever,k_summary = 3,k_total = 10,sources = ["IPCC","IPBES"],max_k = 100,threshold = 0.555,as_dict = True,min_length = 300):
98
+ # assert max_k > k_total
99
+
100
+ # validated_sources = ["IPCC","IPBES"]
101
+ # sources = [x for x in sources if x in validated_sources]
102
+ # filters = {
103
+ # "source": { "$in": sources },
104
+ # }
105
+ # print(filters)
106
+
107
+ # # Retrieve documents
108
+ # docs = retriever.retrieve(query,top_k = max_k,filters = filters)
109
+
110
+ # # Filter by score
111
+ # docs = [{**x.meta,"score":x.score,"content":x.content} for x in docs if x.score > threshold]
112
+
113
+ # if len(docs) == 0:
114
+ # return []
115
+ # res = pd.DataFrame(docs)
116
+ # passages_df = filter_summaries(res,k_summary,k_total)
117
+ # if as_dict:
118
+ # contents = passages_df["content"].tolist()
119
+ # meta = passages_df.drop(columns = ["content"]).to_dict(orient = "records")
120
+ # passages = []
121
+ # for i in range(len(contents)):
122
+ # passages.append({"content":contents[i],"meta":meta[i]})
123
+ # return passages
124
+ # else:
125
+ # return passages_df
126
+
127
+
128
+
129
+ # def retrieve(query,sources = ["IPCC"],threshold = 0.555,k = 10):
130
+
131
+
132
+ # print("hellooooo")
133
+
134
+ # # Reformulate queries
135
+ # reformulated_query,language = reformulate(query)
136
+
137
+ # print(reformulated_query)
138
+
139
+ # # Retrieve documents
140
+ # passages = retrieve_with_summaries(reformulated_query,retriever,k_total = k,k_summary = 3,as_dict = True,sources = sources,threshold = threshold)
141
+ # response = {
142
+ # "query":query,
143
+ # "reformulated_query":reformulated_query,
144
+ # "language":language,
145
+ # "sources":passages,
146
+ # "prompts":{"init_prompt":init_prompt,"sources_prompt":sources_prompt},
147
+ # }
148
+ # return response
149
+
climateqa/vectorstore.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Pinecone
2
+ # More info at https://docs.pinecone.io/docs/langchain
3
+ # And https://python.langchain.com/docs/integrations/vectorstores/pinecone
4
+
5
+ import pinecone
6
+ from langchain.vectorstores import Pinecone
7
+
8
+ # LOAD ENVIRONMENT VARIABLES
9
+ from dotenv import load_dotenv
10
+ import os
11
+ load_dotenv()
12
+
13
+
14
+ def get_pinecone_vectorstore(embeddings,text_key = "content"):
15
+
16
+ # initialize pinecone
17
+ pinecone.init(
18
+ api_key=os.getenv("PINECONE_API_KEY"), # find at app.pinecone.io
19
+ environment=os.getenv("PINECONE_API_ENVIRONMENT"), # next to api key in console
20
+ )
21
+
22
+ index_name = os.getenv("PINECONE_API_INDEX")
23
+ vectorstore = Pinecone.from_existing_index(index_name, embeddings,text_key = text_key)
24
+ return vectorstore
25
+
26
+
27
+ # def get_pinecone_retriever(vectorstore,k = 10,namespace = "vectors",sources = ["IPBES","IPCC"]):
28
+
29
+ # assert isinstance(sources,list)
30
+
31
+ # # Check if all elements in the list are either IPCC or IPBES
32
+ # filter = {
33
+ # "source": { "$in":sources},
34
+ # }
35
+
36
+ # retriever = vectorstore.as_retriever(search_kwargs={
37
+ # "k": k,
38
+ # "namespace":"vectors",
39
+ # "filter":filter
40
+ # })
41
+
42
+ # return retriever
climateqa_v3.db DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:6c05065e5070dd68d05547fc4f330ced5bcc30762d4f566a3fbcfd70d950063f
3
- size 459763712
 
 
 
 
climateqa_v3.faiss DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:2e3190d405db879ccfcd913d0f752fbbde35243ec439f684eed2654484550ab2
3
- size 227269677
 
 
 
 
climateqa_v3.json DELETED
@@ -1 +0,0 @@
1
- {"sql_url": "sqlite:///climateqa_v3.db", "faiss_index_factory_str": "Flat", "index": "climateqa_v3", "similarity": "dot_product", "embedding_dim": 768}
 
 
requirements.txt CHANGED
@@ -1,6 +1,4 @@
1
- faiss-cpu==1.7.2
2
- farm-haystack==1.14.0
3
- gradio==3.22.1
4
  openai==0.27.0
5
  azure-storage-file-share==12.11.1
6
  python-dotenv==1.0.0
 
1
+ gradio==3.47.1
 
 
2
  openai==0.27.0
3
  azure-storage-file-share==12.11.1
4
  python-dotenv==1.0.0
style.css CHANGED
@@ -1,7 +1,7 @@
1
 
2
- :root {
3
  --user-image: url('https://ih1.redbubble.net/image.4776899543.6215/st,small,507x507-pad,600x600,f8f8f8.jpg');
4
- }
5
 
6
  .warning-box {
7
  background-color: #fff3cd;
@@ -147,7 +147,7 @@ label > span{
147
  }
148
 
149
  /* Pseudo-element for the circularly cropped picture */
150
- .message.bot::before {
151
  content: '';
152
  position: absolute;
153
  top: -10px;
@@ -160,5 +160,8 @@ label > span{
160
  border-radius: 50%;
161
  z-index: 10;
162
  }
163
-
164
-
 
 
 
 
1
 
2
+ /* :root {
3
  --user-image: url('https://ih1.redbubble.net/image.4776899543.6215/st,small,507x507-pad,600x600,f8f8f8.jpg');
4
+ } */
5
 
6
  .warning-box {
7
  background-color: #fff3cd;
 
147
  }
148
 
149
  /* Pseudo-element for the circularly cropped picture */
150
+ /* .message.bot::before {
151
  content: '';
152
  position: absolute;
153
  top: -10px;
 
160
  border-radius: 50%;
161
  z-index: 10;
162
  }
163
+ */
164
+
165
+ label.selected{
166
+ background:none !important;
167
+ }