import os import logging from logging.handlers import RotatingFileHandler import gradio as gr from transformers import AutoTokenizer, BitsAndBytesConfig from langchain_huggingface import ChatHuggingFace from langchain.prompts import PromptTemplate from langchain.chains import LLMChain # Настройка логирования log_file = '/tmp/app_debug.log' logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) file_handler = RotatingFileHandler(log_file, maxBytes=10*1024*1024, backupCount=5) file_handler.setFormatter(logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')) logger.addHandler(file_handler) logger.debug("Application started") MODEL_ID = "Qwen/Qwen2.5-Coder-7B-Instruct" MODEL_NAME = MODEL_ID.split("/")[-1] template = """<|im_start|>system\n{system_prompt}\n<|im_end|>\n{history}<|im_start|>user\n{human_input}\n<|im_end|>\n<|im_start|>assistant\n""" prompt = PromptTemplate(template=template, input_variables=["system_prompt", "history", "human_input"]) def format_history(history): return "".join([f"<|im_start|>user\n{h[0]}\n<|im_end|>\n<|im_start|>assistant\n{h[1]}\n<|im_end|>\n" for h in history]) def predict(message, history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p): logger.debug(f"Received prediction request: message='{message}', system_prompt='{system_prompt}'") chat_model.temperature = temperature chat_model.max_new_tokens = max_new_tokens chat_model.top_k = top_k chat_model.repetition_penalty = repetition_penalty chat_model.top_p = top_p chain = LLMChain(llm=chat_model, prompt=prompt) try: formatted_history = format_history(history) for chunk in chain.stream({"system_prompt": system_prompt, "history": formatted_history, "human_input": message}): yield chunk["text"] logger.debug(f"Prediction completed successfully for message: '{message}'") except Exception as e: logger.exception(f"Error during prediction: {str(e)}") yield "An error occurred during processing." tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) chat_model = ChatHuggingFace( model_name=MODEL_ID, tokenizer=tokenizer, model_kwargs={ "device_map": "auto", "quantization_config": BitsAndBytesConfig(load_in_4bit=True), } ) logger.debug("Model and tokenizer loaded successfully") gr.ChatInterface( predict, title=f"🤖 {MODEL_NAME}", description=f"This is the {MODEL_NAME} model designed for coding assistance and general AI tasks.", examples=[ ["Can you solve the equation 2x + 3 = 11 for x in Python?"], ["Write a Java program that checks if a number is even or odd."], ["How can I reverse a string in JavaScript?"], ["Create a C++ function to find the factorial of a number."], ["Write a Python list comprehension to generate a list of squares of numbers from 1 to 10."], ], additional_inputs=[ gr.Textbox("You are a code assistant.", label="System prompt"), gr.Slider(0, 1, 0.3, label="Temperature"), gr.Slider(128, 4096, 1024, label="Max new tokens"), gr.Slider(1, 80, 40, label="Top K sampling"), gr.Slider(0, 2, 1.1, label="Repetition penalty"), gr.Slider(0, 1, 0.95, label="Top P sampling"), ], theme=gr.themes.Soft(primary_hue="blue"), ).queue().launch() logger.debug("Chat interface initialized and launched")