Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,8 @@ import os
|
|
2 |
import json
|
3 |
import subprocess
|
4 |
from threading import Thread
|
|
|
|
|
5 |
|
6 |
import torch
|
7 |
import spaces
|
@@ -10,21 +12,29 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
|
10 |
|
11 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
MODEL_ID = "Qwen/Qwen2.5-Coder-7B-Instruct"
|
14 |
CHAT_TEMPLATE = "ChatML"
|
15 |
MODEL_NAME = MODEL_ID.split("/")[-1]
|
16 |
CONTEXT_LENGTH = 16000
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
DESCRIPTION = f"This is the {MODEL_NAME} model designed for coding assistance and general AI tasks." # Descripción predeterminada
|
22 |
-
|
23 |
-
|
24 |
|
25 |
@spaces.GPU()
|
26 |
def predict(message, history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p):
|
27 |
-
|
28 |
if CHAT_TEMPLATE == "Auto":
|
29 |
stop_tokens = [tokenizer.eos_token_id]
|
30 |
instruction = system_prompt + "\n\n"
|
@@ -69,14 +79,17 @@ def predict(message, history, system_prompt, temperature, max_new_tokens, top_k,
|
|
69 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
70 |
t.start()
|
71 |
outputs = []
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
-
|
79 |
-
# Load model
|
80 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
81 |
quantization_config = BitsAndBytesConfig(
|
82 |
load_in_4bit=True,
|
@@ -90,12 +103,13 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
90 |
attn_implementation="flash_attention_2",
|
91 |
)
|
92 |
|
93 |
-
|
|
|
94 |
gr.ChatInterface(
|
95 |
predict,
|
96 |
title=EMOJI + " " + MODEL_NAME,
|
97 |
description=DESCRIPTION,
|
98 |
-
examples=[
|
99 |
["Can you solve the equation 2x + 3 = 11 for x in Python?"],
|
100 |
["Write a Java program that checks if a number is even or odd."],
|
101 |
["How can I reverse a string in JavaScript?"],
|
@@ -117,4 +131,6 @@ examples=[
|
|
117 |
gr.Slider(0, 1, 0.95, label="Top P sampling"),
|
118 |
],
|
119 |
theme=gr.themes.Soft(primary_hue=COLOR),
|
120 |
-
).queue().launch()
|
|
|
|
|
|
2 |
import json
|
3 |
import subprocess
|
4 |
from threading import Thread
|
5 |
+
import logging
|
6 |
+
from logging.handlers import RotatingFileHandler
|
7 |
|
8 |
import torch
|
9 |
import spaces
|
|
|
12 |
|
13 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
14 |
|
15 |
+
log_file = '/tmp/app_debug.log'
|
16 |
+
logger = logging.getLogger(__name__)
|
17 |
+
logger.setLevel(logging.DEBUG)
|
18 |
+
file_handler = RotatingFileHandler(log_file, maxBytes=10*1024*1024, backupCount=5)
|
19 |
+
file_handler.setLevel(logging.DEBUG)
|
20 |
+
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
21 |
+
file_handler.setFormatter(formatter)
|
22 |
+
logger.addHandler(file_handler)
|
23 |
+
|
24 |
+
logger.debug("Application started")
|
25 |
+
|
26 |
MODEL_ID = "Qwen/Qwen2.5-Coder-7B-Instruct"
|
27 |
CHAT_TEMPLATE = "ChatML"
|
28 |
MODEL_NAME = MODEL_ID.split("/")[-1]
|
29 |
CONTEXT_LENGTH = 16000
|
30 |
|
31 |
+
COLOR = "blue"
|
32 |
+
EMOJI = "🤖"
|
33 |
+
DESCRIPTION = f"This is the {MODEL_NAME} model designed for coding assistance and general AI tasks."
|
|
|
|
|
|
|
34 |
|
35 |
@spaces.GPU()
|
36 |
def predict(message, history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p):
|
37 |
+
logger.debug(f"Received prediction request: message='{message}', system_prompt='{system_prompt}'")
|
38 |
if CHAT_TEMPLATE == "Auto":
|
39 |
stop_tokens = [tokenizer.eos_token_id]
|
40 |
instruction = system_prompt + "\n\n"
|
|
|
79 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
80 |
t.start()
|
81 |
outputs = []
|
82 |
+
try:
|
83 |
+
for new_token in streamer:
|
84 |
+
outputs.append(new_token)
|
85 |
+
if new_token in stop_tokens:
|
86 |
+
break
|
87 |
+
yield "".join(outputs)
|
88 |
+
logger.debug(f"Prediction completed successfully for message: '{message}'")
|
89 |
+
except Exception as e:
|
90 |
+
logger.exception(f"Error during prediction for message '{message}': {str(e)}")
|
91 |
+
yield "An error occurred during processing."
|
92 |
|
|
|
|
|
93 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
94 |
quantization_config = BitsAndBytesConfig(
|
95 |
load_in_4bit=True,
|
|
|
103 |
attn_implementation="flash_attention_2",
|
104 |
)
|
105 |
|
106 |
+
logger.debug("Model and tokenizer loaded successfully")
|
107 |
+
|
108 |
gr.ChatInterface(
|
109 |
predict,
|
110 |
title=EMOJI + " " + MODEL_NAME,
|
111 |
description=DESCRIPTION,
|
112 |
+
examples=[
|
113 |
["Can you solve the equation 2x + 3 = 11 for x in Python?"],
|
114 |
["Write a Java program that checks if a number is even or odd."],
|
115 |
["How can I reverse a string in JavaScript?"],
|
|
|
131 |
gr.Slider(0, 1, 0.95, label="Top P sampling"),
|
132 |
],
|
133 |
theme=gr.themes.Soft(primary_hue=COLOR),
|
134 |
+
).queue().launch()
|
135 |
+
|
136 |
+
logger.debug("Chat interface initialized and launched")
|