Spaces:
Sleeping
Sleeping
import os | |
import json | |
import subprocess | |
from threading import Thread | |
import logging | |
from logging.handlers import RotatingFileHandler | |
import torch | |
import spaces | |
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
log_file = '/tmp/app_debug.log' | |
logger = logging.getLogger(__name__) | |
logger.setLevel(logging.DEBUG) | |
file_handler = RotatingFileHandler(log_file, maxBytes=10*1024*1024, backupCount=5) | |
file_handler.setLevel(logging.DEBUG) | |
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') | |
file_handler.setFormatter(formatter) | |
logger.addHandler(file_handler) | |
logger.debug("Application started") | |
MODEL_ID = "Qwen/Qwen2.5-Coder-7B-Instruct" | |
CHAT_TEMPLATE = "ChatML" | |
MODEL_NAME = MODEL_ID.split("/")[-1] | |
CONTEXT_LENGTH = 16000 | |
COLOR = "blue" | |
EMOJI = "🤖" | |
DESCRIPTION = f"This is the {MODEL_NAME} model designed for coding assistance and general AI tasks." | |
def predict(message, history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p): | |
logger.debug(f"Received prediction request: message='{message}', system_prompt='{system_prompt}'") | |
if CHAT_TEMPLATE == "Auto": | |
stop_tokens = [tokenizer.eos_token_id] | |
instruction = system_prompt + "\n\n" | |
for user, assistant in history: | |
instruction += f"User: {user}\nAssistant: {assistant}\n" | |
instruction += f"User: {message}\nAssistant:" | |
elif CHAT_TEMPLATE == "ChatML": | |
stop_tokens = ["<|endoftext|>", "<|im_end|>"] | |
instruction = '<|im_start|>system\n' + system_prompt + '\n<|im_end|>\n' | |
for user, assistant in history: | |
instruction += f'<|im_start|>user\n{user}\n<|im_end|>\n<|im_start|>assistant\n{assistant}\n<|im_end|>\n' | |
instruction += f'<|im_start|>user\n{message}\n<|im_end|>\n<|im_start|>assistant\n' | |
elif CHAT_TEMPLATE == "Mistral Instruct": | |
stop_tokens = ["</s>", "[INST]", "[INST] ", "<s>", "[/INST]", "[/INST] "] | |
instruction = f'<s>[INST] {system_prompt}\n' | |
for user, assistant in history: | |
instruction += f'{user} [/INST] {assistant}</s>[INST]' | |
instruction += f' {message} [/INST]' | |
else: | |
raise Exception("Incorrect chat template, select 'Auto', 'ChatML' or 'Mistral Instruct'") | |
print(instruction) | |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) | |
enc = tokenizer(instruction, return_tensors="pt", padding=True, truncation=True) | |
input_ids, attention_mask = enc.input_ids, enc.attention_mask | |
if input_ids.shape[1] > CONTEXT_LENGTH: | |
input_ids = input_ids[:, -CONTEXT_LENGTH:] | |
attention_mask = attention_mask[:, -CONTEXT_LENGTH:] | |
generate_kwargs = dict( | |
input_ids=input_ids.to(device), | |
attention_mask=attention_mask.to(device), | |
streamer=streamer, | |
do_sample=True, | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_k=top_k, | |
repetition_penalty=repetition_penalty, | |
top_p=top_p | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
try: | |
for new_token in streamer: | |
outputs.append(new_token) | |
if new_token in stop_tokens: | |
break | |
yield "".join(outputs) | |
logger.debug(f"Prediction completed successfully for message: '{message}'") | |
except Exception as e: | |
logger.exception(f"Error during prediction for message '{message}': {str(e)}") | |
yield "An error occurred during processing." | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
quantization_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_compute_dtype=torch.bfloat16 | |
) | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_ID, | |
device_map="auto", | |
quantization_config=quantization_config, | |
attn_implementation="flash_attention_2", | |
) | |
logger.debug("Model and tokenizer loaded successfully") | |
gr.ChatInterface( | |
predict, | |
title=EMOJI + " " + MODEL_NAME, | |
description=DESCRIPTION, | |
examples=[ | |
["Can you solve the equation 2x + 3 = 11 for x in Python?"], | |
["Write a Java program that checks if a number is even or odd."], | |
["How can I reverse a string in JavaScript?"], | |
["Create a C++ function to find the factorial of a number."], | |
["Write a Python list comprehension to generate a list of squares of numbers from 1 to 10."], | |
["How do I implement a binary search algorithm in C?"], | |
["Write a Ruby script to read a file and count the number of lines in it."], | |
["Create a Swift class to represent a bank account with deposit and withdrawal methods."], | |
["How do I find the maximum element in an array using Kotlin?"], | |
["Write a Rust program to generate the Fibonacci sequence up to the 10th number."] | |
], | |
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False), | |
additional_inputs=[ | |
gr.Textbox("You are a code assistant.", label="System prompt"), | |
gr.Slider(0, 1, 0.3, label="Temperature"), | |
gr.Slider(128, 4096, 1024, label="Max new tokens"), | |
gr.Slider(1, 80, 40, label="Top K sampling"), | |
gr.Slider(0, 2, 1.1, label="Repetition penalty"), | |
gr.Slider(0, 1, 0.95, label="Top P sampling"), | |
], | |
theme=gr.themes.Soft(primary_hue=COLOR), | |
).queue().launch() | |
logger.debug("Chat interface initialized and launched") |