Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,641 Bytes
cc5b602 6f619d7 ae90620 6386510 c4592e6 51a7d9e 6386510 c4592e6 51a7d9e 6386510 e6367a7 6386510 51a7d9e bd34f0b d6256ce 6386510 bd34f0b d6256ce bd34f0b 51a7d9e 6386510 51a7d9e bd34f0b 51a7d9e da59244 6386510 bbd8145 ae90620 c4592e6 d6256ce 6738356 c4592e6 9074f74 c4592e6 6738356 27dc368 51a7d9e 6386510 51a7d9e 82b38de 51a7d9e 82b38de 51a7d9e 3569c20 51a7d9e bd34f0b 51a7d9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
import os
import time
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr
MODEL_LIST = ["internlm/internlm2_5-7b-chat", "internlm/internlm2_5-7b-chat-1m"]
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL_ID = os.environ.get("MODEL_ID", None)
MODEL_NAME = MODEL_ID.split("/")[-1]
TITLE = "<h1><center>internlm2.5-7b-chat</center></h1>"
DESCRIPTION = f"""
<h3>MODEL NOW: <a href="https://hf.co/{MODEL_ID}">{MODEL_NAME}</a></h3>
"""
PLACEHOLDER = """
<center>
<p>InternLM2.5 has open-sourced a 7 billion parameter base model<br> and a chat model tailored for practical scenarios.</p>
</center>
"""
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
h3 {
text-align: center;
}
"""
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
torch_dtype=torch.float16,
trust_remote_code=True).cuda()
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
model = model.eval()
@spaces.GPU()
def stream_chat(message: str, history: list, temperature: float, max_new_tokens: int, top_p: float, top_k: int, penalty: float):
for resp, history in model.stream_chat(
tokenizer,
query = message,
history = history,
max_new_tokens = max_new_tokens,
do_sample = True if temperature == 0 else False,
top_p = top_p,
top_k = top_k,
temperature = temperature,
):
yield resp
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)
with gr.Blocks(css=CSS, theme="soft") as demo:
gr.HTML(TITLE)
gr.HTML(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
gr.ChatInterface(
fn=stream_chat,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.8,
label="Temperature",
render=False,
),
gr.Slider(
minimum=128,
maximum=2048,
step=1,
value=1024,
label="Max New Tokens",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.8,
label="top_p",
render=False,
),
gr.Slider(
minimum=1,
maximum=20,
step=1,
value=20,
label="top_k",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.0,
label="Repetition penalty",
render=False,
),
],
examples=[
["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."],
["Tell me a random fun fact about the Roman Empire."],
["Show me a code snippet of a website's sticky header in CSS and JavaScript."],
],
cache_examples=False,
)
if __name__ == "__main__":
demo.launch()
|