Spaces:
Sleeping
Sleeping
set up to dump to MongoDB instead of PostgreSQL
Browse files- notebooks/gj_error.ipynb +188 -0
- notebooks/parse_description_test.ipynb +2 -2
- utils/google_mongo_jobs.py +100 -0
notebooks/gj_error.ipynb
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"from multiprocessing import process\n",
|
10 |
+
"import pandas as pd\n",
|
11 |
+
"import datetime as dt\n",
|
12 |
+
"import http.client\n",
|
13 |
+
"import json\n",
|
14 |
+
"import urllib.parse\n",
|
15 |
+
"import os\n",
|
16 |
+
"from pymongo import MongoClient\n",
|
17 |
+
"from concurrent.futures import ThreadPoolExecutor, as_completed\n",
|
18 |
+
"\n",
|
19 |
+
"from dotenv import load_dotenv\n",
|
20 |
+
"load_dotenv()\n",
|
21 |
+
"\n",
|
22 |
+
"mongodb_conn = os.getenv('MONGODB_CONNECTION_STRING')\n",
|
23 |
+
"\n",
|
24 |
+
"# Global variables to keep track of searched job titles and cities\n",
|
25 |
+
"searched_jobs = set()\n",
|
26 |
+
"searched_cities = set()\n",
|
27 |
+
"\n",
|
28 |
+
"def google_job_search(job_title, city_state, start=0):\n",
|
29 |
+
" '''\n",
|
30 |
+
" job_title(str): \"Data Scientist\", \"Data Analyst\"\n",
|
31 |
+
" city_state(str): \"Denver, CO\"\n",
|
32 |
+
" '''\n",
|
33 |
+
" query = f\"{job_title} {city_state}\"\n",
|
34 |
+
" params = {\n",
|
35 |
+
" \"api_key\": os.getenv('WEBSCRAPING_API_KEY'),\n",
|
36 |
+
" \"engine\": \"google_jobs\",\n",
|
37 |
+
" \"q\": query,\n",
|
38 |
+
" \"hl\": \"en\",\n",
|
39 |
+
" # \"google_domain\": \"google.com\",\n",
|
40 |
+
" # \"start\": start,\n",
|
41 |
+
" # \"chips\": f\"date_posted:{post_age}\",\n",
|
42 |
+
" }\n",
|
43 |
+
"\n",
|
44 |
+
" query_string = urllib.parse.urlencode(params, quote_via=urllib.parse.quote)\n",
|
45 |
+
"\n",
|
46 |
+
" conn = http.client.HTTPSConnection(\"serpapi.webscrapingapi.com\")\n",
|
47 |
+
" try:\n",
|
48 |
+
" conn.request(\"GET\", f\"/v1?{query_string}\")\n",
|
49 |
+
" print(f\"GET /v1?{query_string}\")\n",
|
50 |
+
" res = conn.getresponse()\n",
|
51 |
+
" try:\n",
|
52 |
+
" data = res.read()\n",
|
53 |
+
" finally:\n",
|
54 |
+
" res.close()\n",
|
55 |
+
" finally:\n",
|
56 |
+
" conn.close()\n",
|
57 |
+
"\n",
|
58 |
+
" try:\n",
|
59 |
+
" json_data = json.loads(data.decode(\"utf-8\"))\n",
|
60 |
+
" jobs_results = json_data['google_jobs_results']\n",
|
61 |
+
" return jobs_results\n",
|
62 |
+
" except (KeyError, json.JSONDecodeError) as e:\n",
|
63 |
+
" print(f\"Error occurred for search: {job_title} in {city_state}\")\n",
|
64 |
+
" print(f\"Error message: {str(e)}\")\n",
|
65 |
+
" print(f\"Data: {data}\")\n",
|
66 |
+
" return None\n",
|
67 |
+
"\n",
|
68 |
+
"def mongo_dump(jobs_results, collection_name):\n",
|
69 |
+
" client = MongoClient(mongodb_conn)\n",
|
70 |
+
" db = client.job_search_db\n",
|
71 |
+
" collection = db[collection_name]\n",
|
72 |
+
" \n",
|
73 |
+
" for job in jobs_results:\n",
|
74 |
+
" job['retrieve_date'] = dt.datetime.today().strftime('%Y-%m-%d')\n",
|
75 |
+
" collection.insert_one(job)\n",
|
76 |
+
" \n",
|
77 |
+
" print(f\"Dumped {len(jobs_results)} documents to MongoDB collection {collection_name}\")\n",
|
78 |
+
"\n",
|
79 |
+
"def process_batch(job, city_state, start=0):\n",
|
80 |
+
" global searched_jobs, searched_cities\n",
|
81 |
+
"\n",
|
82 |
+
" # Check if the job title and city have already been searched\n",
|
83 |
+
" if (job, city_state) in searched_jobs:\n",
|
84 |
+
" print(f'Skipping already searched job: {job} in {city_state}')\n",
|
85 |
+
" return\n",
|
86 |
+
"\n",
|
87 |
+
" jobs_results = google_job_search(job, city_state, start)\n",
|
88 |
+
" if jobs_results is not None:\n",
|
89 |
+
" print(f'City: {city_state} Job: {job} Start: {start}')\n",
|
90 |
+
" mongo_dump(jobs_results, 'sf_bay_test_jobs')\n",
|
91 |
+
"\n",
|
92 |
+
" # Add the job title and city to the searched sets\n",
|
93 |
+
" searched_jobs.add((job, city_state))\n",
|
94 |
+
" searched_cities.add(city_state)\n",
|
95 |
+
"\n",
|
96 |
+
"def main(job_list, city_state_list):\n",
|
97 |
+
" for job in job_list:\n",
|
98 |
+
" for city_state in city_state_list:\n",
|
99 |
+
" output = process_batch(job, city_state)"
|
100 |
+
]
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"cell_type": "code",
|
104 |
+
"execution_count": null,
|
105 |
+
"metadata": {},
|
106 |
+
"outputs": [],
|
107 |
+
"source": [
|
108 |
+
"job_list = [\"Data Scientist\", \"Machine Learning Engineer\", \"AI Gen Engineer\", \"ML Ops\"]\n",
|
109 |
+
"city_state_list = [\"Atlanta, GA\", \"Austin, TX\", \"Boston, MA\", \"Chicago, IL\", \n",
|
110 |
+
" \"Denver CO\", \"Dallas-Ft. Worth, TX\", \"Los Angeles, CA\",\n",
|
111 |
+
" \"New York City NY\", \"San Francisco, CA\", \"Seattle, WA\",\n",
|
112 |
+
" \"Palo Alto CA\", \"Mountain View CA\", \"San Jose, CA\"]\n",
|
113 |
+
"simple_city_state_list: list[str] = [\"Palo Alto CA\", \"San Francisco CA\", \"Mountain View CA\"]\n",
|
114 |
+
"main(job_list, simple_city_state_list)"
|
115 |
+
]
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"cell_type": "code",
|
119 |
+
"execution_count": 4,
|
120 |
+
"metadata": {},
|
121 |
+
"outputs": [
|
122 |
+
{
|
123 |
+
"name": "stdout",
|
124 |
+
"output_type": "stream",
|
125 |
+
"text": [
|
126 |
+
"Skipping already searched job: Data Scientist in San Francisco, CA\n"
|
127 |
+
]
|
128 |
+
}
|
129 |
+
],
|
130 |
+
"source": [
|
131 |
+
"process_batch(\"Data Scientist\", \"San Francisco, CA\", 10)"
|
132 |
+
]
|
133 |
+
},
|
134 |
+
{
|
135 |
+
"cell_type": "code",
|
136 |
+
"execution_count": null,
|
137 |
+
"metadata": {},
|
138 |
+
"outputs": [],
|
139 |
+
"source": []
|
140 |
+
},
|
141 |
+
{
|
142 |
+
"cell_type": "code",
|
143 |
+
"execution_count": null,
|
144 |
+
"metadata": {},
|
145 |
+
"outputs": [],
|
146 |
+
"source": []
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"cell_type": "code",
|
150 |
+
"execution_count": null,
|
151 |
+
"metadata": {},
|
152 |
+
"outputs": [],
|
153 |
+
"source": [
|
154 |
+
"client = MongoClient(mongodb_conn)\n",
|
155 |
+
"db = client.job_search_db\n",
|
156 |
+
"collection = db['sf_bay_test_jobs']"
|
157 |
+
]
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"cell_type": "code",
|
161 |
+
"execution_count": null,
|
162 |
+
"metadata": {},
|
163 |
+
"outputs": [],
|
164 |
+
"source": []
|
165 |
+
}
|
166 |
+
],
|
167 |
+
"metadata": {
|
168 |
+
"kernelspec": {
|
169 |
+
"display_name": "datajobs",
|
170 |
+
"language": "python",
|
171 |
+
"name": "python3"
|
172 |
+
},
|
173 |
+
"language_info": {
|
174 |
+
"codemirror_mode": {
|
175 |
+
"name": "ipython",
|
176 |
+
"version": 3
|
177 |
+
},
|
178 |
+
"file_extension": ".py",
|
179 |
+
"mimetype": "text/x-python",
|
180 |
+
"name": "python",
|
181 |
+
"nbconvert_exporter": "python",
|
182 |
+
"pygments_lexer": "ipython3",
|
183 |
+
"version": "3.11.9"
|
184 |
+
}
|
185 |
+
},
|
186 |
+
"nbformat": 4,
|
187 |
+
"nbformat_minor": 2
|
188 |
+
}
|
notebooks/parse_description_test.ipynb
CHANGED
@@ -90,7 +90,7 @@
|
|
90 |
},
|
91 |
{
|
92 |
"cell_type": "code",
|
93 |
-
"execution_count":
|
94 |
"metadata": {},
|
95 |
"outputs": [
|
96 |
{
|
@@ -295,7 +295,7 @@
|
|
295 |
"[495 rows x 7 columns]"
|
296 |
]
|
297 |
},
|
298 |
-
"execution_count":
|
299 |
"metadata": {},
|
300 |
"output_type": "execute_result"
|
301 |
}
|
|
|
90 |
},
|
91 |
{
|
92 |
"cell_type": "code",
|
93 |
+
"execution_count": 5,
|
94 |
"metadata": {},
|
95 |
"outputs": [
|
96 |
{
|
|
|
295 |
"[495 rows x 7 columns]"
|
296 |
]
|
297 |
},
|
298 |
+
"execution_count": 5,
|
299 |
"metadata": {},
|
300 |
"output_type": "execute_result"
|
301 |
}
|
utils/google_mongo_jobs.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from multiprocessing import process
|
2 |
+
import pandas as pd
|
3 |
+
import datetime as dt
|
4 |
+
import http.client
|
5 |
+
import json
|
6 |
+
import urllib.parse
|
7 |
+
import os
|
8 |
+
from pymongo import MongoClient
|
9 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
10 |
+
|
11 |
+
from dotenv import load_dotenv
|
12 |
+
load_dotenv()
|
13 |
+
|
14 |
+
mongodb_conn = os.getenv('MONGODB_CONNECTION_STRING')
|
15 |
+
|
16 |
+
# Global variables to keep track of searched job titles and cities
|
17 |
+
searched_jobs = set()
|
18 |
+
searched_cities = set()
|
19 |
+
|
20 |
+
def google_job_search(job_title, city_state, start=0):
|
21 |
+
'''
|
22 |
+
job_title(str): "Data Scientist", "Data Analyst"
|
23 |
+
city_state(str): "Denver, CO"
|
24 |
+
'''
|
25 |
+
query = f"{job_title} {city_state}"
|
26 |
+
params = {
|
27 |
+
"api_key": os.getenv('WEBSCRAPING_API_KEY'),
|
28 |
+
"engine": "google_jobs",
|
29 |
+
"q": query,
|
30 |
+
"hl": "en",
|
31 |
+
# "google_domain": "google.com",
|
32 |
+
# "start": start,
|
33 |
+
# "chips": f"date_posted:{post_age}",
|
34 |
+
}
|
35 |
+
|
36 |
+
query_string = urllib.parse.urlencode(params, quote_via=urllib.parse.quote)
|
37 |
+
|
38 |
+
conn = http.client.HTTPSConnection("serpapi.webscrapingapi.com")
|
39 |
+
try:
|
40 |
+
conn.request("GET", f"/v1?{query_string}")
|
41 |
+
print(f"GET /v1?{query_string}")
|
42 |
+
res = conn.getresponse()
|
43 |
+
try:
|
44 |
+
data = res.read()
|
45 |
+
finally:
|
46 |
+
res.close()
|
47 |
+
finally:
|
48 |
+
conn.close()
|
49 |
+
|
50 |
+
try:
|
51 |
+
json_data = json.loads(data.decode("utf-8"))
|
52 |
+
jobs_results = json_data['google_jobs_results']
|
53 |
+
return jobs_results
|
54 |
+
except (KeyError, json.JSONDecodeError) as e:
|
55 |
+
print(f"Error occurred for search: {job_title} in {city_state}")
|
56 |
+
print(f"Error message: {str(e)}")
|
57 |
+
print(f"Data: {data}")
|
58 |
+
return None
|
59 |
+
|
60 |
+
def mongo_dump(jobs_results, collection_name):
|
61 |
+
client = MongoClient(mongodb_conn)
|
62 |
+
db = client.job_search_db
|
63 |
+
collection = db[collection_name]
|
64 |
+
|
65 |
+
for job in jobs_results:
|
66 |
+
job['retrieve_date'] = dt.datetime.today().strftime('%Y-%m-%d')
|
67 |
+
collection.insert_one(job)
|
68 |
+
|
69 |
+
print(f"Dumped {len(jobs_results)} documents to MongoDB collection {collection_name}")
|
70 |
+
|
71 |
+
def process_batch(job, city_state, start=0):
|
72 |
+
global searched_jobs, searched_cities
|
73 |
+
|
74 |
+
# Check if the job title and city have already been searched
|
75 |
+
if (job, city_state) in searched_jobs:
|
76 |
+
print(f'Skipping already searched job: {job} in {city_state}')
|
77 |
+
return
|
78 |
+
|
79 |
+
jobs_results = google_job_search(job, city_state, start)
|
80 |
+
if jobs_results is not None:
|
81 |
+
print(f'City: {city_state} Job: {job} Start: {start}')
|
82 |
+
mongo_dump(jobs_results, 'sf_bay_test_jobs')
|
83 |
+
|
84 |
+
# Add the job title and city to the searched sets
|
85 |
+
searched_jobs.add((job, city_state))
|
86 |
+
searched_cities.add(city_state)
|
87 |
+
|
88 |
+
def main(job_list, city_state_list):
|
89 |
+
for job in job_list:
|
90 |
+
for city_state in city_state_list:
|
91 |
+
output = process_batch(job, city_state)
|
92 |
+
|
93 |
+
if __name__ == "__main__":
|
94 |
+
job_list = ["Data Scientist", "Machine Learning Engineer", "AI Gen Engineer", "ML Ops"]
|
95 |
+
city_state_list = ["Atlanta, GA", "Austin, TX", "Boston, MA", "Chicago, IL",
|
96 |
+
"Denver CO", "Dallas-Ft. Worth, TX", "Los Angeles, CA",
|
97 |
+
"New York City NY", "San Francisco, CA", "Seattle, WA",
|
98 |
+
"Palo Alto CA", "Mountain View CA", "San Jose, CA"]
|
99 |
+
simple_city_state_list: list[str] = ["Palo Alto CA", "San Francisco CA", "Mountain View CA"]
|
100 |
+
main(job_list, simple_city_state_list)
|