File size: 57,936 Bytes
1b96fb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b78565b
 
 
1b96fb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b78565b
1b96fb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b78565b
1b96fb3
b78565b
1b96fb3
b78565b
 
 
1b96fb3
 
 
 
 
 
 
 
 
 
 
b78565b
1b96fb3
 
 
 
 
 
 
b78565b
1b96fb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b78565b
1b96fb3
 
 
 
 
 
 
 
b78565b
1b96fb3
 
 
 
 
 
 
 
 
 
b78565b
1b96fb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b78565b
1b96fb3
 
 
 
 
 
 
 
 
 
b78565b
1b96fb3
 
 
 
b78565b
1b96fb3
 
 
 
b78565b
1b96fb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b78565b
1b96fb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b78565b
 
 
 
 
 
 
 
 
 
 
 
1b96fb3
b78565b
1b96fb3
 
b78565b
1b96fb3
 
 
 
 
b78565b
 
 
 
 
 
 
 
 
 
1b96fb3
 
 
 
 
 
 
 
f7fc876
 
1b96fb3
f7fc876
 
 
1b96fb3
f7fc876
 
 
1b96fb3
f7fc876
 
 
1b96fb3
f7fc876
 
 
 
 
1b96fb3
f7fc876
 
 
 
 
1b96fb3
f7fc876
 
 
1b96fb3
f7fc876
 
 
 
 
1b96fb3
f7fc876
1b96fb3
f7fc876
1b96fb3
 
f7fc876
 
 
1b96fb3
f7fc876
 
 
1b96fb3
f7fc876
 
 
1b96fb3
f7fc876
1b96fb3
f7fc876
 
 
 
 
1b96fb3
f7fc876
 
 
 
1b96fb3
f7fc876
 
 
 
1b96fb3
f7fc876
 
 
 
1b96fb3
f7fc876
 
 
1b96fb3
f7fc876
 
 
1b96fb3
f7fc876
 
 
 
 
 
1b96fb3
f7fc876
 
 
 
 
 
 
1b96fb3
f7fc876
 
 
 
 
 
 
 
1b96fb3
f7fc876
 
 
1b96fb3
f7fc876
 
1b96fb3
f7fc876
 
 
1b96fb3
f7fc876
 
 
 
 
1b96fb3
f7fc876
 
 
 
 
 
1b96fb3
f7fc876
 
 
 
 
 
 
1b96fb3
f7fc876
 
 
 
 
 
 
1b96fb3
f7fc876
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b96fb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7fc876
 
1b96fb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Job description from google jobs"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "# import pandas as pd\n",
    "# # from serpapi import GoogleSearch\n",
    "# import sqlite3\n",
    "# import datetime as dt\n",
    "# import http.client\n",
    "# import json\n",
    "# import config\n",
    "# import urllib.parse\n",
    "# import os\n",
    "# from sqlalchemy import create_engine\n",
    "# import psycopg2\n",
    "\n",
    "# def google_job_search(job_title, city_state):\n",
    "#     '''\n",
    "#     job_title(str): \"Data Scientist\", \"Data Analyst\"\n",
    "#     city_state(str): \"Denver, CO\"\n",
    "#     post_age,(str)(optional): \"3day\", \"week\", \"month\"\n",
    "#     '''\n",
    "#     query = f\"{job_title} {city_state}\"\n",
    "#     params = {\n",
    "#         \"engine\": \"google_jobs\",\n",
    "#         \"q\": query,\n",
    "#         \"hl\": \"en\",\n",
    "#         \"api_key\": os.getenv('SerpAPIkey'),\n",
    "#         # \"chips\": f\"date_posted:{post_age}\",\n",
    "#     }\n",
    "\n",
    "#     query_string = urllib.parse.urlencode(params, quote_via=urllib.parse.quote)\n",
    "\n",
    "#     conn = http.client.HTTPSConnection(\"serpapi.webscrapingapi.com/v1\")\n",
    "#     try:\n",
    "#         conn.request(\"GET\", f\"/v1?{query_string}\")\n",
    "#         res = conn.getresponse()\n",
    "#         try:\n",
    "#             data = res.read()\n",
    "#         finally:\n",
    "#             res.close()\n",
    "#     finally:\n",
    "#         conn.close()\n",
    "\n",
    "#     try:\n",
    "#         json_data = json.loads(data.decode(\"utf-8\"))\n",
    "#         jobs_results = json_data['google_jobs_results']\n",
    "#         job_columns = ['title', 'company_name', 'location', 'description']\n",
    "#         df = pd.DataFrame(jobs_results, columns=job_columns)\n",
    "#         return df\n",
    "#     except (KeyError, json.JSONDecodeError) as e:\n",
    "#         print(f\"Error occurred for search: {job_title} in {city_state}\")\n",
    "#         print(f\"Error message: {str(e)}\")\n",
    "#         return None\n",
    "\n",
    "# def sql_dump(df, table):\n",
    "#     engine = create_engine(f\"postgresql://{os.getenv('MasterName')}:{os.getenv('MasterPass')}@{os.getenv('RDS_EndPoint')}:5432/postgres\")\n",
    "#     with engine.connect() as conn:\n",
    "#         df.to_sql(table, conn, if_exists='append', chunksize=1000, method='multi', index=False)\n",
    "\n",
    "# def main(job_list, city_state_list):\n",
    "#     for job in job_list:\n",
    "#         for city_state in city_state_list:\n",
    "#             df_10jobs = google_job_search(job, city_state)\n",
    "#             if df_10jobs is not None:\n",
    "#                 print(f'City: {city_state} Job: {job}')\n",
    "#                 print(df_10jobs.shape)\n",
    "#                 date = dt.datetime.today().strftime('%Y-%m-%d')\n",
    "#                 df_10jobs['retrieve_date'] = date\n",
    "#                 sql_dump(df_10jobs, 'datajobs24')\n",
    "\n",
    "#     return None"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "import sqlite3\n",
    "import datetime as dt\n",
    "import http.client\n",
    "import json\n",
    "import urllib.parse\n",
    "import os\n",
    "from sqlalchemy import create_engine\n",
    "from concurrent.futures import ThreadPoolExecutor, as_completed\n",
    "from dotenv import load_dotenv\n",
    "\n",
    "load_dotenv()\n",
    "\n",
    "def google_job_search(job_title, city_state, start=0):\n",
    "    '''\n",
    "    job_title(str): \"Data Scientist\", \"Data Analyst\"\n",
    "    city_state(str): \"Denver, CO\"\n",
    "    post_age,(str)(optional): \"3day\", \"week\", \"month\"\n",
    "    '''\n",
    "    query = f\"{job_title} {city_state}\"\n",
    "    params = {\n",
    "        \"api_key\": os.getenv('SerpAPIkey'),\n",
    "        \"engine\": \"google_jobs\",\n",
    "        \"q\": query,\n",
    "        \"hl\": \"en\",\n",
    "        \"start\": start,\n",
    "        # \"chips\": f\"date_posted:{post_age}\",\n",
    "    }\n",
    "\n",
    "    query_string = urllib.parse.urlencode(params, quote_via=urllib.parse.quote)\n",
    "\n",
    "    conn = http.client.HTTPSConnection(\"serpapi.webscrapingapi.com\")\n",
    "    try:\n",
    "        conn.request(\"GET\", f\"/v1?{query_string}\")\n",
    "        res = conn.getresponse()\n",
    "        try:\n",
    "            data = res.read()\n",
    "        finally:\n",
    "            res.close()\n",
    "    finally:\n",
    "        conn.close()\n",
    "\n",
    "    try:\n",
    "        json_data = json.loads(data.decode(\"utf-8\"))\n",
    "        jobs_results = json_data['google_jobs_results']\n",
    "        job_columns = ['title', 'company_name', 'location', 'description', 'extensions', 'job_id']\n",
    "        df = pd.DataFrame(jobs_results, columns=job_columns)\n",
    "        return df\n",
    "    except (KeyError, json.JSONDecodeError) as e:\n",
    "        print(f\"Error occurred for search: {job_title} in {city_state}\")\n",
    "        print(f\"Error message: {str(e)}\")\n",
    "        return None\n",
    "\n",
    "def sql_dump(df, table):\n",
    "    engine = create_engine(f\"postgresql://{os.getenv('PSQL_MASTER_NAME')}:{os.getenv('PSQL_KEY')}@{os.getenv('RDS_ENDPOINT')}:5432/postgres\")\n",
    "    with engine.connect() as conn:\n",
    "        df.to_sql(table, conn, if_exists='append', chunksize=20, method='multi', index=False)\n",
    "        print(f\"Dumped {df.shape} to SQL table {table}\")\n",
    "\n",
    "def process_batch(job, city_state, start):\n",
    "    df_10jobs = google_job_search(job, city_state, start)\n",
    "    if df_10jobs is not None:\n",
    "        print(f'City: {city_state} Job: {job} Start: {start}')\n",
    "        print(df_10jobs.shape)\n",
    "        date = dt.datetime.today().strftime('%Y-%m-%d')\n",
    "        df_10jobs['retrieve_date'] = date\n",
    "        df_10jobs.drop_duplicates(subset=['job_id', 'company_name'], inplace=True)\n",
    "        rows_affected = sql_dump(df_10jobs, 'usajobs24')\n",
    "        print(f\"Rows affected: {rows_affected}\")\n",
    "\n",
    "def main(job_list, city_state_list):\n",
    "    with ThreadPoolExecutor() as executor:\n",
    "        futures = []\n",
    "        for job in job_list:\n",
    "            for city_state in city_state_list:\n",
    "                for start in range(0, 2):\n",
    "                    future = executor.submit(process_batch, job, city_state, start)\n",
    "                    futures.append(future)\n",
    "\n",
    "        for future in as_completed(futures):\n",
    "            future.result()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [],
   "source": [
    "# job_list = [\"Data Analyst\", \"Data Engineer\", \"Big Data Engineer\"]\n",
    "# simple_city_state_list = [\"Menlo Park CA\", \"Palo Alto CA\", \"San Francisco CA\", \"Mountain View CA\"]\n",
    "# main(job_list, simple_city_state_list)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Great now that we have written some data lets read it."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "from sqlalchemy import create_engine\n",
    "\n",
    "def read_data_from_db(table_name):\n",
    "    engine = create_engine(f\"postgresql://{os.getenv('PSQL_MASTER_NAME')}:{os.getenv('PSQL_KEY')}@{os.getenv('RDS_ENDPOINT')}:5432/postgres\")\n",
    "    \n",
    "    try:\n",
    "        with engine.connect() as conn:\n",
    "            query = f'SELECT * FROM \"{table_name}\"'\n",
    "            df = pd.read_sql(query, conn)\n",
    "            return df\n",
    "    except Exception as e:\n",
    "        print(f\"Error occurred while reading data from the database: {str(e)}\")\n",
    "        return None\n",
    "\n",
    "data24_df = read_data_from_db('usajobstest')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(417, 7)"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data24_df.shape"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>title</th>\n",
       "      <th>company_name</th>\n",
       "      <th>location</th>\n",
       "      <th>description</th>\n",
       "      <th>extensions</th>\n",
       "      <th>job_id</th>\n",
       "      <th>retrieve_date</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>Business Intelligence Analyst</td>\n",
       "      <td>Nuvolum</td>\n",
       "      <td>San Francisco, CA</td>\n",
       "      <td>Nuvolum combines innovative, data-driven strat...</td>\n",
       "      <td>{\"3 days ago\",Full-time,\"No degree mentioned\"}</td>\n",
       "      <td>eyJqb2JfdGl0bGUiOiJCdXNpbmVzcyBJbnRlbGxpZ2VuY2...</td>\n",
       "      <td>2024-05-04</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>Sr. Strategy and Business Intelligence Analyst</td>\n",
       "      <td>Sunrun</td>\n",
       "      <td>San Francisco, CA (+1 other)</td>\n",
       "      <td>Everything we do at Sunrun is driven by a dete...</td>\n",
       "      <td>{\"12 days ago\",Full-time,\"Health insurance\",\"D...</td>\n",
       "      <td>eyJqb2JfdGl0bGUiOiJTci4gU3RyYXRlZ3kgYW5kIEJ1c2...</td>\n",
       "      <td>2024-05-04</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>Business Intelligence Analyst</td>\n",
       "      <td>Side</td>\n",
       "      <td>Anywhere</td>\n",
       "      <td>Side, Inc. seeks Business Intelligence Analyst...</td>\n",
       "      <td>{\"11 days ago\",\"151,736–157,000 a year\",\"Work ...</td>\n",
       "      <td>eyJqb2JfdGl0bGUiOiJCdXNpbmVzcyBJbnRlbGxpZ2VuY2...</td>\n",
       "      <td>2024-05-04</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>Senior Business Intelligence Developer</td>\n",
       "      <td>TekNavigators Staffing</td>\n",
       "      <td>San Francisco, CA</td>\n",
       "      <td>Role: Senior BI Developer\\n\\nLocation: San Fra...</td>\n",
       "      <td>{\"20 hours ago\",Contractor,\"No degree mentioned\"}</td>\n",
       "      <td>eyJqb2JfdGl0bGUiOiJTZW5pb3IgQnVzaW5lc3MgSW50ZW...</td>\n",
       "      <td>2024-05-04</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>Senior Business Intelligence Analyst</td>\n",
       "      <td>FIS Fidelity National Information Services</td>\n",
       "      <td>San Francisco, CA</td>\n",
       "      <td>Position Type : Full time Type Of Hire : Exper...</td>\n",
       "      <td>{\"19 days ago\",Full-time}</td>\n",
       "      <td>eyJqb2JfdGl0bGUiOiJTZW5pb3IgQnVzaW5lc3MgSW50ZW...</td>\n",
       "      <td>2024-05-04</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>412</th>\n",
       "      <td>Business Intelligence Analyst - Diabetes Marke...</td>\n",
       "      <td>Medtronic</td>\n",
       "      <td>Anywhere</td>\n",
       "      <td>Careers that Change Lives\\n\\nWe are looking fo...</td>\n",
       "      <td>{\"10 days ago\",\"Work from home\",Full-time,\"No ...</td>\n",
       "      <td>eyJqb2JfdGl0bGUiOiJCdXNpbmVzcyBJbnRlbGxpZ2VuY2...</td>\n",
       "      <td>2024-05-04</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>413</th>\n",
       "      <td>IT Analyst, Business Intelligence/Data Warehou...</td>\n",
       "      <td>Keck Medicine of USC</td>\n",
       "      <td>Alhambra, CA</td>\n",
       "      <td>Actively design and develop ETL solutions that...</td>\n",
       "      <td>{\"13 days ago\",Full-time}</td>\n",
       "      <td>eyJqb2JfdGl0bGUiOiJJVCBBbmFseXN0LCBCdXNpbmVzcy...</td>\n",
       "      <td>2024-05-04</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>414</th>\n",
       "      <td>Director, Business Intelligence</td>\n",
       "      <td>Deutsch LA</td>\n",
       "      <td>Los Angeles, CA</td>\n",
       "      <td>DIRECTOR, BUSINESS INTELLIGENCE\\n\\nWe are seek...</td>\n",
       "      <td>{\"3 days ago\",Full-time,\"No degree mentioned\"}</td>\n",
       "      <td>eyJqb2JfdGl0bGUiOiJEaXJlY3RvciwgQnVzaW5lc3MgSW...</td>\n",
       "      <td>2024-05-04</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>415</th>\n",
       "      <td>Business Intelligence Programmer 1</td>\n",
       "      <td>U.S. Bank</td>\n",
       "      <td>Los Angeles, CA</td>\n",
       "      <td>At U.S. Bank, we’re on a journey to do our bes...</td>\n",
       "      <td>{\"3 days ago\",Full-time,\"Health insurance\",\"De...</td>\n",
       "      <td>eyJqb2JfdGl0bGUiOiJCdXNpbmVzcyBJbnRlbGxpZ2VuY2...</td>\n",
       "      <td>2024-05-04</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>416</th>\n",
       "      <td>Business Intelligence Analyst</td>\n",
       "      <td>BIGO</td>\n",
       "      <td>Los Angeles, CA</td>\n",
       "      <td>Location: 10250 Constellation Blvd., Century C...</td>\n",
       "      <td>{\"1 day ago\",Full-time,\"Health insurance\",\"Den...</td>\n",
       "      <td>eyJqb2JfdGl0bGUiOiJCdXNpbmVzcyBJbnRlbGxpZ2VuY2...</td>\n",
       "      <td>2024-05-04</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>417 rows × 7 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "                                                 title  \\\n",
       "0                        Business Intelligence Analyst   \n",
       "1       Sr. Strategy and Business Intelligence Analyst   \n",
       "2                        Business Intelligence Analyst   \n",
       "3               Senior Business Intelligence Developer   \n",
       "4                 Senior Business Intelligence Analyst   \n",
       "..                                                 ...   \n",
       "412  Business Intelligence Analyst - Diabetes Marke...   \n",
       "413  IT Analyst, Business Intelligence/Data Warehou...   \n",
       "414                    Director, Business Intelligence   \n",
       "415                 Business Intelligence Programmer 1   \n",
       "416                      Business Intelligence Analyst   \n",
       "\n",
       "                                   company_name                      location  \\\n",
       "0                                       Nuvolum             San Francisco, CA   \n",
       "1                                        Sunrun  San Francisco, CA (+1 other)   \n",
       "2                                          Side                      Anywhere   \n",
       "3                        TekNavigators Staffing             San Francisco, CA   \n",
       "4    FIS Fidelity National Information Services             San Francisco, CA   \n",
       "..                                          ...                           ...   \n",
       "412                                   Medtronic                      Anywhere   \n",
       "413                        Keck Medicine of USC                  Alhambra, CA   \n",
       "414                                  Deutsch LA               Los Angeles, CA   \n",
       "415                                   U.S. Bank               Los Angeles, CA   \n",
       "416                                        BIGO               Los Angeles, CA   \n",
       "\n",
       "                                           description  \\\n",
       "0    Nuvolum combines innovative, data-driven strat...   \n",
       "1    Everything we do at Sunrun is driven by a dete...   \n",
       "2    Side, Inc. seeks Business Intelligence Analyst...   \n",
       "3    Role: Senior BI Developer\\n\\nLocation: San Fra...   \n",
       "4    Position Type : Full time Type Of Hire : Exper...   \n",
       "..                                                 ...   \n",
       "412  Careers that Change Lives\\n\\nWe are looking fo...   \n",
       "413  Actively design and develop ETL solutions that...   \n",
       "414  DIRECTOR, BUSINESS INTELLIGENCE\\n\\nWe are seek...   \n",
       "415  At U.S. Bank, we’re on a journey to do our bes...   \n",
       "416  Location: 10250 Constellation Blvd., Century C...   \n",
       "\n",
       "                                            extensions  \\\n",
       "0       {\"3 days ago\",Full-time,\"No degree mentioned\"}   \n",
       "1    {\"12 days ago\",Full-time,\"Health insurance\",\"D...   \n",
       "2    {\"11 days ago\",\"151,736–157,000 a year\",\"Work ...   \n",
       "3    {\"20 hours ago\",Contractor,\"No degree mentioned\"}   \n",
       "4                            {\"19 days ago\",Full-time}   \n",
       "..                                                 ...   \n",
       "412  {\"10 days ago\",\"Work from home\",Full-time,\"No ...   \n",
       "413                          {\"13 days ago\",Full-time}   \n",
       "414     {\"3 days ago\",Full-time,\"No degree mentioned\"}   \n",
       "415  {\"3 days ago\",Full-time,\"Health insurance\",\"De...   \n",
       "416  {\"1 day ago\",Full-time,\"Health insurance\",\"Den...   \n",
       "\n",
       "                                                job_id retrieve_date  \n",
       "0    eyJqb2JfdGl0bGUiOiJCdXNpbmVzcyBJbnRlbGxpZ2VuY2...    2024-05-04  \n",
       "1    eyJqb2JfdGl0bGUiOiJTci4gU3RyYXRlZ3kgYW5kIEJ1c2...    2024-05-04  \n",
       "2    eyJqb2JfdGl0bGUiOiJCdXNpbmVzcyBJbnRlbGxpZ2VuY2...    2024-05-04  \n",
       "3    eyJqb2JfdGl0bGUiOiJTZW5pb3IgQnVzaW5lc3MgSW50ZW...    2024-05-04  \n",
       "4    eyJqb2JfdGl0bGUiOiJTZW5pb3IgQnVzaW5lc3MgSW50ZW...    2024-05-04  \n",
       "..                                                 ...           ...  \n",
       "412  eyJqb2JfdGl0bGUiOiJCdXNpbmVzcyBJbnRlbGxpZ2VuY2...    2024-05-04  \n",
       "413  eyJqb2JfdGl0bGUiOiJJVCBBbmFseXN0LCBCdXNpbmVzcy...    2024-05-04  \n",
       "414  eyJqb2JfdGl0bGUiOiJEaXJlY3RvciwgQnVzaW5lc3MgSW...    2024-05-04  \n",
       "415  eyJqb2JfdGl0bGUiOiJCdXNpbmVzcyBJbnRlbGxpZ2VuY2...    2024-05-04  \n",
       "416  eyJqb2JfdGl0bGUiOiJCdXNpbmVzcyBJbnRlbGxpZ2VuY2...    2024-05-04  \n",
       "\n",
       "[417 rows x 7 columns]"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data24_df"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "# get the list of unique title, company_name pairs\n",
    "title_company = data24_df[['title', 'company_name', 'location', 'description']].drop_duplicates()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>title</th>\n",
       "      <th>company_name</th>\n",
       "      <th>location</th>\n",
       "      <th>description</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>Business Intelligence Analyst</td>\n",
       "      <td>Nuvolum</td>\n",
       "      <td>San Francisco, CA</td>\n",
       "      <td>Nuvolum combines innovative, data-driven strat...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>Sr. Strategy and Business Intelligence Analyst</td>\n",
       "      <td>Sunrun</td>\n",
       "      <td>San Francisco, CA (+1 other)</td>\n",
       "      <td>Everything we do at Sunrun is driven by a dete...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>Business Intelligence Analyst</td>\n",
       "      <td>Side</td>\n",
       "      <td>Anywhere</td>\n",
       "      <td>Side, Inc. seeks Business Intelligence Analyst...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>Senior Business Intelligence Developer</td>\n",
       "      <td>TekNavigators Staffing</td>\n",
       "      <td>San Francisco, CA</td>\n",
       "      <td>Role: Senior BI Developer\\n\\nLocation: San Fra...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>Senior Business Intelligence Analyst</td>\n",
       "      <td>FIS Fidelity National Information Services</td>\n",
       "      <td>San Francisco, CA</td>\n",
       "      <td>Position Type : Full time Type Of Hire : Exper...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>412</th>\n",
       "      <td>Business Intelligence Analyst - Diabetes Marke...</td>\n",
       "      <td>Medtronic</td>\n",
       "      <td>Anywhere</td>\n",
       "      <td>Careers that Change Lives\\n\\nWe are looking fo...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>413</th>\n",
       "      <td>IT Analyst, Business Intelligence/Data Warehou...</td>\n",
       "      <td>Keck Medicine of USC</td>\n",
       "      <td>Alhambra, CA</td>\n",
       "      <td>Actively design and develop ETL solutions that...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>414</th>\n",
       "      <td>Director, Business Intelligence</td>\n",
       "      <td>Deutsch LA</td>\n",
       "      <td>Los Angeles, CA</td>\n",
       "      <td>DIRECTOR, BUSINESS INTELLIGENCE\\n\\nWe are seek...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>415</th>\n",
       "      <td>Business Intelligence Programmer 1</td>\n",
       "      <td>U.S. Bank</td>\n",
       "      <td>Los Angeles, CA</td>\n",
       "      <td>At U.S. Bank, we’re on a journey to do our bes...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>416</th>\n",
       "      <td>Business Intelligence Analyst</td>\n",
       "      <td>BIGO</td>\n",
       "      <td>Los Angeles, CA</td>\n",
       "      <td>Location: 10250 Constellation Blvd., Century C...</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>405 rows × 4 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "                                                 title  \\\n",
       "0                        Business Intelligence Analyst   \n",
       "1       Sr. Strategy and Business Intelligence Analyst   \n",
       "2                        Business Intelligence Analyst   \n",
       "3               Senior Business Intelligence Developer   \n",
       "4                 Senior Business Intelligence Analyst   \n",
       "..                                                 ...   \n",
       "412  Business Intelligence Analyst - Diabetes Marke...   \n",
       "413  IT Analyst, Business Intelligence/Data Warehou...   \n",
       "414                    Director, Business Intelligence   \n",
       "415                 Business Intelligence Programmer 1   \n",
       "416                      Business Intelligence Analyst   \n",
       "\n",
       "                                   company_name                      location  \\\n",
       "0                                       Nuvolum             San Francisco, CA   \n",
       "1                                        Sunrun  San Francisco, CA (+1 other)   \n",
       "2                                          Side                      Anywhere   \n",
       "3                        TekNavigators Staffing             San Francisco, CA   \n",
       "4    FIS Fidelity National Information Services             San Francisco, CA   \n",
       "..                                          ...                           ...   \n",
       "412                                   Medtronic                      Anywhere   \n",
       "413                        Keck Medicine of USC                  Alhambra, CA   \n",
       "414                                  Deutsch LA               Los Angeles, CA   \n",
       "415                                   U.S. Bank               Los Angeles, CA   \n",
       "416                                        BIGO               Los Angeles, CA   \n",
       "\n",
       "                                           description  \n",
       "0    Nuvolum combines innovative, data-driven strat...  \n",
       "1    Everything we do at Sunrun is driven by a dete...  \n",
       "2    Side, Inc. seeks Business Intelligence Analyst...  \n",
       "3    Role: Senior BI Developer\\n\\nLocation: San Fra...  \n",
       "4    Position Type : Full time Type Of Hire : Exper...  \n",
       "..                                                 ...  \n",
       "412  Careers that Change Lives\\n\\nWe are looking fo...  \n",
       "413  Actively design and develop ETL solutions that...  \n",
       "414  DIRECTOR, BUSINESS INTELLIGENCE\\n\\nWe are seek...  \n",
       "415  At U.S. Bank, we’re on a journey to do our bes...  \n",
       "416  Location: 10250 Constellation Blvd., Century C...  \n",
       "\n",
       "[405 rows x 4 columns]"
      ]
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "title_company"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "data24_df.to_csv('data24.csv', index=False)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 36,
   "metadata": {},
   "outputs": [],
   "source": [
    "# from typing import List, Optional\n",
    "# from langchain_core.pydantic_v1 import BaseModel, Field\n",
    "\n",
    "# class CompanyOverview(BaseModel):\n",
    "#     \"\"\"\n",
    "#     A model for capturing key information about the company offering the job.\n",
    "    \n",
    "#     Extract relevant details about the company from the job description, \n",
    "#     including a brief overview of its industry and products, its mission and \n",
    "#     values, size, and location(s).\n",
    "    \n",
    "#     Focus on capturing the most salient points that give a well-rounded picture\n",
    "#     of the company and its culture.\n",
    "#     \"\"\"\n",
    "\n",
    "#     about: Optional[str] = Field(\n",
    "#         None, \n",
    "#         description=\"\"\"Brief description of the company, its industry, products, services, \n",
    "#                     and any notable achievements or differentiators\"\"\"\n",
    "#     )\n",
    "\n",
    "#     mission_and_values: Optional[str] = Field(\n",
    "#         None,\n",
    "#         description=\"\"\"Company mission, vision, values, and culture, including commitments \n",
    "#                     to diversity, inclusion, social responsibility, and work-life balance\"\"\"\n",
    "#     )\n",
    "    \n",
    "#     size: Optional[str] = Field(\n",
    "#         None,\n",
    "#         description=\"Details about company size, such as number of employees\")\n",
    "    \n",
    "#     locations: Optional[str] = Field(\n",
    "#         None,\n",
    "#         description=\"\"\"Geographic presence of the company, including headquarters, \n",
    "#                     offices, and any remote work options\"\"\"\n",
    "#     )\n",
    "    \n",
    "#     city: Optional[str] = Field(None, description=\"City where the company is located\")\n",
    "    \n",
    "#     state: Optional[str] = Field(None, description=\"State where the company is located\")\n",
    "\n",
    "\n",
    "# class RoleSummary(BaseModel):\n",
    "#     \"\"\"\n",
    "#     A model for capturing the key summary points about the job role.\n",
    "    \n",
    "#     Extract the essential high-level details about the role from the job description,\n",
    "#     such as the job title, the team or department the role belongs to, the role type, \n",
    "#     and any remote work options.\n",
    "    \n",
    "#     Prioritize information that helps understand the overall scope and positioning \n",
    "#     of the role within the company.\n",
    "#     \"\"\"\n",
    "    \n",
    "#     title: str = Field(..., description=\"Title of the job role\")\n",
    "    \n",
    "#     team_or_department: Optional[str] = Field(\n",
    "#         None,\n",
    "#         description=\"\"\"Team, department, or business unit the role belongs to, \n",
    "#                     including any collaborations with other teams\"\"\"\n",
    "#     )\n",
    "    \n",
    "#     role_type: Optional[str] = Field(\n",
    "#         None,\n",
    "#         description=\"Type of role (full-time, part-time, contract, etc.)\"\n",
    "#     )\n",
    "    \n",
    "#     remote: Optional[str] = Field(\n",
    "#         None,\n",
    "#         description=\"Remote work options for the role (full, hybrid, none)\"\n",
    "#     )\n",
    "\n",
    "# class ResponsibilitiesAndQualifications(BaseModel):\n",
    "#     \"\"\"\n",
    "#     A model for capturing the key responsibilities, requirements, and preferred \n",
    "#     qualifications for the job role.\n",
    "\n",
    "#     Extract the essential duties and expectations of the role, the mandatory \n",
    "#     educational background and experience required, and any additional skills \n",
    "#     or characteristics that are desirable but not strictly necessary.\n",
    "\n",
    "#     The goal is to provide a clear and comprehensive picture of what the role \n",
    "#     entails and what qualifications the ideal candidate should possess.\n",
    "#     \"\"\"\n",
    "\n",
    "#     responsibilities: List[str] = Field(\n",
    "#         description=\"\"\"The core duties, tasks, and expectations of the role, encompassing \n",
    "#                     areas such as metrics, theories, business understanding, product \n",
    "#                     direction, systems, leadership, decision making, strategy, and \n",
    "#                     collaboration, as described in the job description\"\"\"\n",
    "#     )\n",
    "\n",
    "#     required_qualifications: List[str] = Field(\n",
    "#         description=\"\"\"The essential educational qualifications (e.g., Doctorate, \n",
    "#                     Master's, Bachelor's degrees in specific fields) and years of \n",
    "#                     relevant professional experience that are mandatory for the role, \n",
    "#                     including any alternative acceptable combinations of education \n",
    "#                     and experience, as specified in the job description\"\"\"\n",
    "#     )\n",
    "    \n",
    "#     preferred_qualifications: List[str] = Field(\n",
    "#         description=\"\"\"Any additional skills, experiences, characteristics, or domain \n",
    "#                     expertise that are valuable for the role but not absolute \n",
    "#                     requirements, such as proficiency with specific tools/technologies, \n",
    "#                     relevant soft skills, problem solving abilities, and industry \n",
    "#                     knowledge, as mentioned in the job description as preferred or \n",
    "#                     nice-to-have qualifications\"\"\"\n",
    "#     )\n",
    "    \n",
    "# class CompensationAndBenefits(BaseModel):\n",
    "#     \"\"\"\n",
    "#     A model for capturing the compensation and benefits package for the job role.\n",
    "    \n",
    "#     Extract details about the salary or pay range, bonus and equity compensation, \n",
    "#     benefits, and perks from the job description.\n",
    "    \n",
    "#     Aim to provide a comprehensive view of the total rewards offered for the role,\n",
    "#     including both monetary compensation and non-monetary benefits and perks.\n",
    "#     \"\"\"\n",
    "    \n",
    "#     salary_or_pay_range: Optional[str] = Field(\n",
    "#         None,\n",
    "#         description=\"\"\"The salary range or hourly pay range for the role, including \n",
    "#                     any specific numbers or bands mentioned in the job description\"\"\"\n",
    "#     )\n",
    "    \n",
    "#     bonus_and_equity: Optional[str] = Field(\n",
    "#         None,\n",
    "#         description=\"\"\"Any information about bonus compensation, such as signing bonuses, \n",
    "#                     annual performance bonuses, or other incentives, as well as details \n",
    "#                     about equity compensation like stock options or RSUs\"\"\"\n",
    "#     )\n",
    "    \n",
    "#     benefits: Optional[List[str]] = Field(\n",
    "#         None,\n",
    "#         description=\"\"\"A list of benefits offered for the role, such as health insurance, \n",
    "#                     dental and vision coverage, retirement plans (401k, pension), paid \n",
    "#                     time off (vacation, sick days, holidays), parental leave, and any \n",
    "#                     other standard benefits mentioned in the job description\"\"\"\n",
    "#     )\n",
    "    \n",
    "#     perks: Optional[List[str]] = Field(\n",
    "#         None,\n",
    "#         description=\"\"\"A list of additional perks and amenities offered, such as free food \n",
    "#                     or snacks, commuter benefits, wellness programs, learning and development \n",
    "#                     stipends, employee discounts, or any other unique perks the company \n",
    "#                     provides to its employees, as mentioned in the job description\"\"\"\n",
    "#     )\n",
    "\n",
    "# class JobDescription(BaseModel):\n",
    "#     \"\"\"Extracted information from a job description.\"\"\"\n",
    "#     company_overview: CompanyOverview\n",
    "#     role_summary: RoleSummary\n",
    "#     responsibilities_and_qualifications: ResponsibilitiesAndQualifications\n",
    "#     compensation_and_benefits: CompensationAndBenefits"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import sys\n",
    "sys.path.append('../utils')\n",
    "\n",
    "from job_desc_pydantic import JobDescription"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 37,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "True"
      ]
     },
     "execution_count": 37,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from typing import List, Optional\n",
    "\n",
    "from langchain.chains import create_structured_output_runnable\n",
    "from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
    "from langchain_core.pydantic_v1 import BaseModel, Field\n",
    "\n",
    "from langchain_groq import ChatGroq\n",
    "from dotenv import load_dotenv\n",
    "import os\n",
    "\n",
    "load_dotenv()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 38,
   "metadata": {},
   "outputs": [],
   "source": [
    "prompt = ChatPromptTemplate.from_messages(\n",
    "    [\n",
    "        (\n",
    "            \"system\",\n",
    "            \"\"\"You are an expert at identifying key aspects of job descriptions. Your task is to extract important information from a raw job description and organize it into a structured format using the ResponsibilitiesAndQualifications class.\n",
    "\n",
    "                When parsing the job description, your goal is to capture as much relevant information as possible in the appropriate fields of the class. This includes:\n",
    "\n",
    "                1. All key responsibilities and duties of the role, covering the full range of tasks and expectations.\n",
    "                2. The required educational qualifications and years of experience, including different acceptable combinations.\n",
    "                3. Any additional preferred skills, experiences, and characteristics that are desirable for the role.\n",
    "\n",
    "                Avoid summarizing or paraphrasing the information. Instead, extract the details as closely as possible to how they appear in the original job description. The aim is to organize and structure the raw data, not to condense or interpret it.\n",
    "\n",
    "                Some specific things to look out for:\n",
    "                - Responsibilities related to metrics, theories, business understanding, product direction, systems, leadership, decision making, strategy, and collaboration\n",
    "                - Required degrees (Doctorate, Master's, Bachelor's) in relevant fields, along with the corresponding years of experience\n",
    "                - Preferred qualifications like years of coding experience, soft skills, problem solving abilities, and domain expertise\n",
    "\n",
    "                If any of these details are missing from the job description, simply omit them from the output rather than trying to infer or fill in the gaps.\n",
    "\n",
    "                The structured data you extract will be used for further analysis and insights downstream, so err on the side of including more information rather than less. The key is to make the unstructured job description data more organized and manageable while still retaining all the important details.\n",
    "            \"\"\",\n",
    "        ),\n",
    "        (\"human\", \"{text}\"),\n",
    "    ]\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 44,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/Users/leowalker/anaconda3/envs/datajobs/lib/python3.11/site-packages/langchain_core/_api/beta_decorator.py:87: LangChainBetaWarning: The method `ChatGroq.with_structured_output` is in beta. It is actively being worked on, so the API may change.\n",
      "  warn_beta(\n"
     ]
    }
   ],
   "source": [
    "llm = ChatGroq(model_name=\"llama3-70b-8192\")\n",
    "\n",
    "extractor = prompt | llm.with_structured_output(\n",
    "    schema=JobDescription,\n",
    "    method=\"function_calling\",\n",
    "    include_raw=False,\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 42,
   "metadata": {},
   "outputs": [],
   "source": [
    "test_description = title_company['description'][2]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 157,
   "metadata": {},
   "outputs": [],
   "source": [
    "jobdesc = extractor.invoke(test_description)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 158,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{\n",
      "    \"company_overview\": {\n",
      "        \"about\": \"Microsoft is a leading technology company responsible for delivering the quality experience to over 500M+ monthly active users around the world in Microsoft\\u2019s search engine, Bing.\",\n",
      "        \"mission_and_values\": \"Empower every person and every organization on the planet to achieve more.\",\n",
      "        \"size\": \"500M+ users\",\n",
      "        \"locations\": \"Global\",\n",
      "        \"city\": \"Redmond\",\n",
      "        \"state\": null\n",
      "    },\n",
      "    \"role_summary\": {\n",
      "        \"title\": \"Principal Data Scientist\",\n",
      "        \"team_or_department\": \"Search + Distribution (S+D) team\",\n",
      "        \"role_type\": \"Full-time\",\n",
      "        \"remote\": \"N/A\"\n",
      "    },\n",
      "    \"responsibilities_and_qualifications\": {\n",
      "        \"responsibilities\": [\n",
      "            \"Define, invent, and deliver online and offline behavioral and human labeled metrics which accurately measure the satisfaction and success of our customers interacting with Search.\",\n",
      "            \"Apply behavioral game theory and social science understanding to get the quality work out of crowd workers from around the world\",\n",
      "            \"Develop deep understanding of business metrics such as daily active users, query share, click share and query volume across all the relevant entry points\",\n",
      "            \"Influence the product and business direction through metrics analyses\",\n",
      "            \"Define and build systems and policies to ensure quality, stable, and performant code\"\n",
      "        ],\n",
      "        \"required_qualifications\": [\n",
      "            \"Doctorate in Data Science, Mathematics, Statistics, Econometrics, Economics, Operations Research, Computer Science, or related field AND 5+ year(s) data-science experience.\",\n",
      "            \"OR Master's Degree in Data Science, Mathematics, Statistics, Econometrics, Economics, Operations Research, Computer Science, or related field AND 7+ years data-science experience.\",\n",
      "            \"OR Bachelor's Degree in Data Science, Mathematics, Statistics, Econometrics, Economics, Operations Research, Computer Science, or related field AND 10+ years data-science experience.\",\n",
      "            \"OR equivalent experience.\"\n",
      "        ],\n",
      "        \"preferred_qualifications\": [\n",
      "            \"6+ years of experience coding in Python, C++, C#, C or Java.\",\n",
      "            \"Customer focused, strategic, drives for results, is self-motivated, and has a propensity for action.\",\n",
      "            \"Organizational, analytical, data science skills and intuition.\",\n",
      "            \"Problem solver: ability to solve problems that the world has not solved before\",\n",
      "            \"Interpersonal skills: cross-group and cross-culture collaboration.\",\n",
      "            \"Experience with real world system building and data collection, including design, coding and evaluation.\"\n",
      "        ]\n",
      "    },\n",
      "    \"compensation_and_benefits\": {\n",
      "        \"salary_or_pay_range\": \"USD $133,600 - $256,800 per year\",\n",
      "        \"bonus_and_equity\": \"Competitive compensation package\",\n",
      "        \"benefits\": [\n",
      "            \"health insurance\",\n",
      "            \"dental and vision coverage\",\n",
      "            \"retirement plans (401k, pension)\",\n",
      "            \"paid time off (vacation, sick days, holidays)\",\n",
      "            \"parental leave\"\n",
      "        ],\n",
      "        \"perks\": [\n",
      "            \"free food or snacks\",\n",
      "            \"commuter benefits\",\n",
      "            \"wellness programs\",\n",
      "            \"learning and development stipends\",\n",
      "            \"employee discounts\"\n",
      "        ]\n",
      "    }\n",
      "}\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "JobDescription(company_overview=CompanyOverview(about='Microsoft is a leading technology company responsible for delivering the quality experience to over 500M+ monthly active users around the world in Microsoft’s search engine, Bing.', mission_and_values='Empower every person and every organization on the planet to achieve more.', size='500M+ users', locations='Global', city='Redmond', state=None), role_summary=RoleSummary(title='Principal Data Scientist', team_or_department='Search + Distribution (S+D) team', role_type='Full-time', remote='N/A'), responsibilities_and_qualifications=ResponsibilitiesAndQualifications(responsibilities=['Define, invent, and deliver online and offline behavioral and human labeled metrics which accurately measure the satisfaction and success of our customers interacting with Search.', 'Apply behavioral game theory and social science understanding to get the quality work out of crowd workers from around the world', 'Develop deep understanding of business metrics such as daily active users, query share, click share and query volume across all the relevant entry points', 'Influence the product and business direction through metrics analyses', 'Define and build systems and policies to ensure quality, stable, and performant code'], required_qualifications=['Doctorate in Data Science, Mathematics, Statistics, Econometrics, Economics, Operations Research, Computer Science, or related field AND 5+ year(s) data-science experience.', \"OR Master's Degree in Data Science, Mathematics, Statistics, Econometrics, Economics, Operations Research, Computer Science, or related field AND 7+ years data-science experience.\", \"OR Bachelor's Degree in Data Science, Mathematics, Statistics, Econometrics, Economics, Operations Research, Computer Science, or related field AND 10+ years data-science experience.\", 'OR equivalent experience.'], preferred_qualifications=['6+ years of experience coding in Python, C++, C#, C or Java.', 'Customer focused, strategic, drives for results, is self-motivated, and has a propensity for action.', 'Organizational, analytical, data science skills and intuition.', 'Problem solver: ability to solve problems that the world has not solved before', 'Interpersonal skills: cross-group and cross-culture collaboration.', 'Experience with real world system building and data collection, including design, coding and evaluation.']), compensation_and_benefits=CompensationAndBenefits(salary_or_pay_range='USD $133,600 - $256,800 per year', bonus_and_equity='Competitive compensation package', benefits=['health insurance', 'dental and vision coverage', 'retirement plans (401k, pension)', 'paid time off (vacation, sick days, holidays)', 'parental leave'], perks=['free food or snacks', 'commuter benefits', 'wellness programs', 'learning and development stipends', 'employee discounts']))"
      ]
     },
     "execution_count": 158,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import json\n",
    "\n",
    "def pretty_print_pydantic(obj):\n",
    "    print(json.dumps(obj.dict(), indent=4))\n",
    "\n",
    "# Example usage\n",
    "pretty_print_pydantic(jobdesc)\n",
    "jobdesc"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 95,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "('The Search + Distribution (S+D) team is the leading applied artificial '\n",
      " 'intelligence team at Microsoft responsible for delivering the quality '\n",
      " 'experience to over 500M+ monthly active users around the world in '\n",
      " 'Microsoft’s search engine, Bing. Our responsibilities include delivering '\n",
      " 'competitive search results, differentiated experiences, and product and '\n",
      " 'business growth. We are constantly applying the... latest state of the art '\n",
      " 'AI technologies to our product and also transferring this technology to '\n",
      " 'other groups across the company.\\n'\n",
      " '\\n'\n",
      " 'We sre seeking experienced data scientist to solve cutting-edge metrics and '\n",
      " 'measurement problems in the space of Search, and lead cross-team '\n",
      " 'initiatives. We believe metrics play a key role in executing on the strategy '\n",
      " 'for building the final product.\\n'\n",
      " '\\n'\n",
      " 'A critical part of the role is to advance our A/B experimentation '\n",
      " 'capabilities for Bing and Microsoft Copilot by introducing advanced, '\n",
      " 'powerful functionality at very large scale to eventually increase '\n",
      " 'experimenter agility and depth of insights, and reduce infrastructure cost '\n",
      " 'through smart design of data structures and computation methods. The role '\n",
      " 'requires not only skills in data science, but also knowledge in data '\n",
      " 'engineering and systems.\\n'\n",
      " '\\n'\n",
      " 'You will work closely with multiple teams across S+D and beyond to build a '\n",
      " 'measurement strategy and roadmap towards measuring how relevant, fresh, and '\n",
      " 'authoritative our results are while being strategically differentiated from '\n",
      " 'our biggest competitors. We expect you to work with Microsoft Research and '\n",
      " 'the rest of academia to unravel complex problems in our products and push '\n",
      " 'the limits of what AI can do for our customers. The world needs credible '\n",
      " 'alternatives to find authoritative information on the web, so there is '\n",
      " 'social responsibility.\\n'\n",
      " '\\n'\n",
      " 'This Principal Data Scientist position is a very strategic position part of '\n",
      " 'the S+D Bing Metrics and Analytics team. S+D itself is part of the broader '\n",
      " 'Windows and Web Experiences Team (WWE) and this position will collaborate '\n",
      " 'with and influence other data science and metrics groups in WWE such as '\n",
      " 'Edge, MS Start, Maps, Bing Ads and more. If you are passionate about working '\n",
      " 'on the latest and hottest areas that will help you develop skills in '\n",
      " 'Artificial Intelligence, Machine Learning, data science, scale systems, UX, '\n",
      " 'and product growth, this is the team you’re looking for!\\n'\n",
      " '\\n'\n",
      " 'Microsoft’s mission is to empower every person and every organization on the '\n",
      " 'planet to achieve more. As employees we come together with a growth mindset, '\n",
      " 'innovate to empower others, and collaborate to realize our shared goals. '\n",
      " 'Each day we build on our values of respect, integrity, and accountability to '\n",
      " 'create a culture of inclusion where everyone can thrive at work and beyond. '\n",
      " 'In alignment with our Microsoft values, we are committed to cultivating an '\n",
      " 'inclusive work environment for all employees to positively impact our '\n",
      " 'culture every day.\\n'\n",
      " '\\n'\n",
      " 'Responsibilities\\n'\n",
      " '• Define, invent, and deliver online and offline behavioral and human '\n",
      " 'labeled metrics which accurately measure the satisfaction and success of our '\n",
      " 'customers interacting with Search.\\n'\n",
      " '• Apply behavioral game theory and social science understanding to get the '\n",
      " 'quality work out of crowd workers from around the world\\n'\n",
      " '• Develop deep understanding of business metrics such as daily active users, '\n",
      " 'query share, click share and query volume across all the relevant entry '\n",
      " 'points\\n'\n",
      " '• Influence the product and business direction through metrics analyses\\n'\n",
      " '• Define and build systems and policies to ensure quality, stable, and '\n",
      " 'performant code\\n'\n",
      " '• Lead a team through analysis, design and code review that guarantee '\n",
      " 'analysis and code quality and allow more junior members to learn and grow '\n",
      " 'their expertise while helping the team build an inclusive interdisciplinary '\n",
      " 'culture where everyone can do their best work\\n'\n",
      " '• Make independent decisions for the team and handle difficult tradeoffs\\n'\n",
      " '• Translate strategy into plans that are clear and measurable, with progress '\n",
      " 'shared out monthly to stakeholders\\n'\n",
      " '• Partner effectively with program management, engineers, finance, '\n",
      " 'marketing, exec management, and other areas of the business\\n'\n",
      " '\\n'\n",
      " 'Qualifications\\n'\n",
      " '\\n'\n",
      " 'Required Qualifications:\\n'\n",
      " '• Doctorate in Data Science, Mathematics, Statistics, Econometrics, '\n",
      " 'Economics, Operations Research, Computer Science, or related field AND 5+ '\n",
      " 'year(s) data-science experience (e.g., managing structured and unstructured '\n",
      " 'data, applying statistical techniques and reporting results)\\n'\n",
      " \"• OR Master's Degree in Data Science, Mathematics, Statistics, Econometrics, \"\n",
      " 'Economics, Operations Research, Computer Science, or related field AND 7+ '\n",
      " 'years data-science experience (e.g., managing structured and unstructured '\n",
      " 'data, applying statistical techniques and reporting results)\\n'\n",
      " \"• OR Bachelor's Degree in Data Science, Mathematics, Statistics, \"\n",
      " 'Econometrics, Economics, Operations Research, Computer Science, or related '\n",
      " 'field AND 10+ years data-science experience (e.g., managing structured and '\n",
      " 'unstructured data, applying statistical techniques and reporting results)\\n'\n",
      " '• OR equivalent experience.\\n'\n",
      " '\\n'\n",
      " 'Preferred Qualifications:\\n'\n",
      " '• 6+ years of experience coding in Python, C++, C#, C or Java.\\n'\n",
      " '• Customer focused, strategic, drives for results, is self-motivated, and '\n",
      " 'has a propensity for action.\\n'\n",
      " '• Organizational, analytical, data science skills and intuition.\\n'\n",
      " '• Problem solver: ability to solve problems that the world has not solved '\n",
      " 'before\\n'\n",
      " '• Interpersonal skills: cross-group and cross-culture collaboration.\\n'\n",
      " '• Experience with real world system building and data collection, including '\n",
      " 'design, coding and evaluation.\\n'\n",
      " '\\n'\n",
      " 'Data Science IC5 - The typical base pay range for this role across the U.S. '\n",
      " 'is USD $133,600 - $256,800 per year. There is a different range applicable '\n",
      " 'to specific work locations, within the San Francisco Bay area and New York '\n",
      " 'City metropolitan area, and the base pay range for this role in those '\n",
      " 'locations is USD $173,200 - $282,200 per year.\\n'\n",
      " '\\n'\n",
      " 'Certain roles may be eligible for benefits and other compensation. Find '\n",
      " 'additional benefits and pay information here: '\n",
      " 'https://careers.microsoft.com/us/en/us-corporate-pay\\n'\n",
      " '\\n'\n",
      " '#WWE# #SearchDistribution# #Bing#\\n'\n",
      " '\\n'\n",
      " 'Microsoft is an equal opportunity employer. Consistent with applicable law, '\n",
      " 'all qualified applicants will receive consideration for employment without '\n",
      " 'regard to age, ancestry, citizenship, color, family or medical care leave, '\n",
      " 'gender identity or expression, genetic information, immigration status, '\n",
      " 'marital status, medical condition, national origin, physical or mental '\n",
      " 'disability, political affiliation, protected veteran or military status, '\n",
      " 'race, ethnicity, religion, sex (including pregnancy), sexual orientation, or '\n",
      " 'any other characteristic protected by applicable local laws, regulations and '\n",
      " 'ordinances. If you need assistance and/or a reasonable accommodation due to '\n",
      " 'a disability during the application process, read more about requesting '\n",
      " 'accommodations')\n"
     ]
    }
   ],
   "source": [
    "import pprint\n",
    "pp = pprint.PrettyPrinter(width=80)\n",
    "pp.pprint(test_description)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "du_ds_tools",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}