File size: 4,973 Bytes
318df0b
 
 
 
828df56
 
318df0b
 
828df56
318df0b
 
 
 
a7ddb9f
828df56
 
 
 
 
 
318df0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
828df56
318df0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47faf2e
828df56
47faf2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
828df56
 
 
 
 
318df0b
828df56
 
 
 
318df0b
828df56
 
 
 
 
 
 
 
 
47faf2e
 
 
 
 
 
 
 
 
 
 
 
828df56
47faf2e
828df56
318df0b
 
 
 
47faf2e
 
318df0b
 
 
 
 
 
 
 
828df56
a7ddb9f
318df0b
 
 
 
828df56
 
a7ddb9f
 
 
828df56
a7ddb9f
828df56
 
a7ddb9f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
from dotenv import load_dotenv
import io
import streamlit as st
from langchain.prompts import PromptTemplate
from langchain_core.output_parsers import PydanticOutputParser
from langchain_anthropic import ChatAnthropic
from langchain_openai import ChatOpenAI
from pydantic import ValidationError
from langchain_core.pydantic_v1 import BaseModel, Field
from resume_template import Resume
from json import JSONDecodeError
import PyPDF2
import json
import time
import os
# Set the LANGCHAIN_TRACING_V2 environment variable to 'true'
os.environ['LANGCHAIN_TRACING_V2'] = 'true'

# Set the LANGCHAIN_PROJECT environment variable to the desired project name
os.environ['LANGCHAIN_PROJECT'] = 'Resume_Project'

load_dotenv()

def pdf_to_string(file):
    """
    Convert a PDF file to a string.

    Parameters:
    file (io.BytesIO): A file-like object representing the PDF file.

    Returns:
    str: The extracted text from the PDF.
    """
    pdf_reader = PyPDF2.PdfReader(file)
    num_pages = len(pdf_reader.pages)
    text = ''
    for i in range(num_pages):
        page = pdf_reader.pages[i]
        text += page.extract_text()
    file.close()
    return text


def extract_resume_fields(full_text, model):
    """
    Analyze a resume text and extract structured information using a specified language model.
    Parameters:
    full_text (str): The text content of the resume.
    model (str): The language model object to use for processing the text.
    Returns:
    dict: A dictionary containing structured information extracted from the resume.
    """
    # The Resume object is imported from the local resume_template file

    with open("prompts/resume_extraction.prompt", "r") as f:
        template = f.read()

    parser = PydanticOutputParser(pydantic_object=Resume)

    prompt_template = PromptTemplate(
        template=template,
        input_variables=["resume"],
        partial_variables={"response_template": parser.get_format_instructions()},
    )
    llm = llm_dict.get(model, ChatOpenAI(temperature=0, model=model))

    chain = prompt_template | llm | parser
    max_attempts = 2
    attempt = 1

    while attempt <= max_attempts:
        try:
            output = chain.invoke(full_text)
            print(output)
            return output
        except ValidationError as e:
            if attempt == max_attempts:
                raise e
            else:
                print(f"Validation error occurred. Retrying (attempt {attempt + 1}/{max_attempts})...")
                attempt += 1

    return None

    # try:
    #     parsed_output = parser.parse(output.content)
    #     json_output = parsed_output.json()
    #     print(json_output)
    #     return json_output
    
    # except ValidationError as e:
    #     print(f"Validation error: {e}")
    #     print(output)
    #     return output.content
    
    # except JSONDecodeError as e:
    #     print(f"JSONDecodeError error: {e}")
    #     print(output)
    #     return output.content

def display_extracted_fields(obj, section_title=None, indent=0):
    if section_title:
        st.subheader(section_title)
    for field_name, field_value in obj:
        if field_name in ["personal_details", "education", "work_experience", "projects", "skills", "certifications", "publications", "awards", "additional_sections"]:
            st.write(" " * indent + f"**{field_name.replace('_', ' ').title()}**:")
            if isinstance(field_value, BaseModel):
                display_extracted_fields(field_value, None, indent + 1)
            elif isinstance(field_value, list):
                for item in field_value:
                    if isinstance(item, BaseModel):
                        display_extracted_fields(item, None, indent + 1)
                    else:
                        st.write(" " * (indent + 1) + "- " + str(item))
            else:
                st.write(" " * (indent + 1) + str(field_value))
        else:
            st.write(" " * indent + f"{field_name.replace('_', ' ').title()}: " + str(field_value))


st.title("Resume Parser")

llm_dict = {
    "GPT 3.5 turbo": ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo"),
    "Anthropic Sonnet": ChatAnthropic(model_name="claude-3-sonnet-20240229"),
}

selected_model = st.selectbox("Select a model", list(llm_dict.keys()))

uploaded_file = st.file_uploader("Upload a PDF file", type="pdf")

if uploaded_file is not None:
    if st.button("Convert PDF to Text"):
        start_time = time.time()
        
        text = pdf_to_string(uploaded_file)
        
        extracted_fields = extract_resume_fields(text, selected_model)
        
        end_time = time.time()
        elapsed_time = end_time - start_time
        
        st.write(f"Extraction completed in {elapsed_time:.2f} seconds")
        
        display_extracted_fields(extracted_fields, "Extracted Resume Fields")

        # for key, value in extracted_fields.items():
        #     st.write(f"{key}: {value}")