import gradio as gr from matplotlib import gridspec import matplotlib.pyplot as plt import numpy as np from PIL import Image import tensorflow as tf from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation feature_extractor = SegformerFeatureExtractor.from_pretrained( "mattmdjaga/segformer_b2_clothes" ) model = TFSegformerForSemanticSegmentation.from_pretrained( "mattmdjaga/segformer_b2_clothes" ) def ade_palette(): """ADE20K palette that maps each class to RGB values.""" return [ [255, 0, 0], [0, 255, 0], [0, 0, 255], [255, 255, 0], [255, 0, 255], [0, 255, 255], [128, 0, 0], [0, 128, 0], [0, 0, 128], [128, 128, 0], [128, 0, 128], [0, 128, 128], [192, 192, 192], [128, 128, 128], [255, 128, 0], [128, 255, 0], [128, 0, 255], [45, 78, 123], [156, 200, 56], [32, 90, 210], [56, 123, 67], [180, 56, 123], [123, 67, 45], [45, 134, 200], [67, 56, 123], [78, 123, 67], [32, 210, 90], [45, 56, 189], [123, 56, 123], [56, 156, 200], [189, 56, 45], [112, 200, 56], [56, 123, 45], [200, 32, 90], [123, 45, 78], [200, 156, 56], [45, 67, 123], [56, 45, 78], [45, 56, 123], [123, 67, 56], [56, 78, 123], [210, 90, 32], [123, 56, 189], [45, 200, 134], [67, 123, 56], [123, 45, 67], [90, 32, 210], [200, 45, 78], [32, 210, 90], [45, 123, 67], [165, 42, 87], [72, 145, 167], [15, 158, 75], [209, 89, 40], [32, 21, 121], [184, 20, 100], [56, 135, 15], [128, 92, 176], [1, 119, 140], [220, 151, 43], [41, 97, 72], [148, 38, 27], [107, 86, 176], [21, 26, 136], [174, 27, 90], [91, 96, 204], [108, 50, 107], [27, 45, 136], [168, 200, 52], [7, 102, 27], [42, 93, 56], [140, 52, 112], [92, 107, 168], [17, 118, 176], [59, 50, 174], [206, 40, 143], [44, 19, 142], [23, 168, 75], [54, 57, 189], [144, 21, 15], [15, 176, 35], [107, 19, 79], [204, 52, 114], [48, 173, 83], [11, 120, 53], [206, 104, 28], [20, 31, 153], [27, 21, 93], [11, 206, 138], [112, 30, 83], [68, 91, 152], [153, 13, 43], [25, 114, 54], [92, 27, 150], [108, 42, 59], [194, 77, 5], [145, 48, 83], [7, 113, 19], [25, 92, 113], [60, 168, 79], [78, 33, 120], [89, 176, 205], [27, 200, 94], [210, 67, 23], [123, 89, 189], [225, 56, 112], [75, 156, 45], [172, 104, 200], [15, 170, 197], [240, 133, 65], [89, 156, 112], [214, 88, 57], [156, 134, 200], [78, 57, 189], [200, 78, 123], [106, 120, 210], [145, 56, 112], [89, 120, 189], [185, 206, 56], [47, 99, 28], [112, 189, 78], [200, 112, 89], [89, 145, 112], [78, 106, 189], [112, 78, 189], [156, 112, 78], [28, 210, 99], [78, 89, 189], [189, 78, 57], [112, 200, 78], [189, 47, 78], [205, 112, 57], [78, 145, 57], [200, 78, 112], [99, 89, 145], [200, 156, 78], [57, 78, 145], [78, 57, 99], [57, 78, 145], [145, 112, 78], [78, 89, 145], [210, 99, 28], [145, 78, 189], [57, 200, 136], [89, 156, 78], [145, 78, 99], [99, 28, 210], [189, 78, 47], [28, 210, 99], [78, 145, 57], ] labels_list = [] with open(r'labels.txt', 'r') as fp: for line in fp: labels_list.append(line[:-1]) colormap = np.asarray(ade_palette()) def label_to_color_image(label): if label.ndim != 2: raise ValueError("Expect 2-D input label") if np.max(label) >= len(colormap): raise ValueError("label value too large.") return colormap[label] def draw_plot(pred_img, seg): fig = plt.figure(figsize=(20, 15)) grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1]) plt.subplot(grid_spec[0]) plt.imshow(pred_img) plt.axis('off') LABEL_NAMES = np.asarray(labels_list) FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1) FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP) unique_labels = np.unique(seg.numpy().astype("uint8")) ax = plt.subplot(grid_spec[1]) plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest") ax.yaxis.tick_right() plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels]) plt.xticks([], []) ax.tick_params(width=0.0, labelsize=25) return fig def sepia(input_img): input_img = Image.fromarray(input_img) inputs = feature_extractor(images=input_img, return_tensors="tf") outputs = model(**inputs) logits = outputs.logits logits = tf.transpose(logits, [0, 2, 3, 1]) logits = tf.image.resize( logits, input_img.size[::-1] ) # We reverse the shape of `image` because `image.size` returns width and height. seg = tf.math.argmax(logits, axis=-1)[0] color_seg = np.zeros( (seg.shape[0], seg.shape[1], 3), dtype=np.uint8 ) # height, width, 3 for label, color in enumerate(colormap): color_seg[seg.numpy() == label, :] = color # Show image + mask pred_img = np.array(input_img) * 0.5 + color_seg * 0.5 pred_img = pred_img.astype(np.uint8) fig = draw_plot(pred_img, seg) return fig demo = gr.Interface(fn=sepia, inputs=gr.Image(shape=(400, 600)), outputs=['plot'], examples=["person-1.jpg", "person-2.jpg", "person-3.jpg", "person-4.jpg", "person-5.jpg"], allow_flagging='never') demo.launch()