File size: 2,513 Bytes
2df6947
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b2204c
2df6947
7b2204c
2df6947
 
7b2204c
2df6947
7b2204c
2df6947
 
 
 
 
7b2204c
2df6947
 
7b2204c
2df6947
 
7b2204c
2df6947
7b2204c
2df6947
 
 
 
 
 
7b2204c
8f23b65
ed7fa5a
2df6947
 
ed7fa5a
2df6947
 
7b2204c
 
2df6947
 
 
3dd06f5
 
 
 
2df6947
7b2204c
2df6947
 
 
 
7b2204c
2df6947
 
34775f8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
from haystack.telemetry import tutorial_running
import logging
from haystack.document_stores import InMemoryDocumentStore
from haystack.pipelines.standard_pipelines import TextIndexingPipeline
from haystack.nodes import BM25Retriever
from haystack.nodes import FARMReader
from haystack.pipelines import ExtractiveQAPipeline
from pprint import pprint
from haystack.utils import print_answers
from haystack.nodes import EmbeddingRetriever
import codecs
from haystack.pipelines import FAQPipeline
from haystack.utils import print_answers
import logging
from haystack.telemetry import tutorial_running
from haystack.document_stores import InMemoryDocumentStore
from haystack.nodes import EmbeddingRetriever
import pandas as pd
from haystack.pipelines import FAQPipeline
from haystack.utils import print_answers

tutorial_running(6)

logging.basicConfig(format="%(levelname)s - %(name)s -  %(message)s", level=logging.WARNING)
logging.getLogger("haystack").setLevel(logging.INFO)

document_store = InMemoryDocumentStore()

f = codecs.open('faq.txt','r','UTF-8')
line = f.readlines()
lines = []
for i in range(2,33,2):
    line.pop(i)

for i in range(33):
    line[i] = line[i][:-2]

for i in range(0,33,2):
    lines.append([line[i],line[i+1]])

colu = ['question','answer']

df = pd.DataFrame(data=lines, columns=colu)
retriever = EmbeddingRetriever(
        document_store=document_store,
        embedding_model="sentence-transformers/all-MiniLM-L6-v2",
        use_gpu=True,
        scale_score=False,
    )

question = list(df['question'].values)
df['embedding'] = retriever.embed_queries(queries=question).tolist()
df = df.rename(columns={'question': 'content'})

docs_to_index = df.to_dict(orient='records')
document_store.write_documents(docs_to_index)


def haysstack(input,retriever=retriever):
    pipe = FAQPipeline(retriever=retriever)
    prediction = pipe.run(query=input, params={"Retriever": {"top_k": 1}})
    answer = str(prediction['answers'][0])
    ans = answer.split(',')[0]
    return ans[19:]
    #prediction['answers'][0]
# Run any question and change top_k to see more or less answers

import gradio as gr
from gradio.components import Textbox
inputs = Textbox(lines=7, label="请输入你的问题")
outputs = Textbox(lines=7, label="来自智能客服的回答")

gr.Interface(fn=haysstack, inputs=inputs, outputs=outputs, title="电商客服",
             description="我是您的电商客服,您可以问任何你想知道的问题",
             theme=gr.themes.Default()).launch()