Kvikontent commited on
Commit
b0267fa
β€’
1 Parent(s): 837cb24

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -1
app.py CHANGED
@@ -3,6 +3,8 @@ import spaces
3
  import torch
4
  from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
5
  from diffusers.utils import export_to_video
 
 
6
 
7
  pipe = DiffusionPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16")
8
  pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
@@ -11,7 +13,14 @@ pipe.enable_model_cpu_offload()
11
  @spaces.GPU(duration=250)
12
  def generate(prompt, num_inference_steps=25):
13
  video_frames = pipe(prompt, num_inference_steps).frames
14
- video_path = export_to_video(video_frames)
 
 
 
 
 
 
 
15
  return video_path
16
 
17
  prompt = gr.Textbox("Enter prompt to generate a video")
 
3
  import torch
4
  from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
5
  from diffusers.utils import export_to_video
6
+ import cv2
7
+ import numpy as np
8
 
9
  pipe = DiffusionPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16")
10
  pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
 
13
  @spaces.GPU(duration=250)
14
  def generate(prompt, num_inference_steps=25):
15
  video_frames = pipe(prompt, num_inference_steps).frames
16
+ resized_frames = []
17
+ for frame in video_frames:
18
+ height, width, _ = frame.shape
19
+ new_height = (height // 8) * 8
20
+ new_width = (width // 8) * 8
21
+ resized_frame = cv2.resize(frame, (new_width, new_height))
22
+ resized_frames.append(resized_frame)
23
+ video_path = export_to_video(np.array(resized_frames))
24
  return video_path
25
 
26
  prompt = gr.Textbox("Enter prompt to generate a video")