Spaces:
Sleeping
Sleeping
KrishnaKumar23
commited on
Commit
•
84ddfaa
1
Parent(s):
e4941eb
initial commit
Browse files- app.py +99 -0
- llm_model.py +92 -0
- requirements.txt +13 -0
- sidebar.py +60 -0
app.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from streamlit_lottie import st_lottie
|
3 |
+
import fitz # PyMuPDF
|
4 |
+
import requests
|
5 |
+
import os, shutil
|
6 |
+
import sidebar
|
7 |
+
import llm_model
|
8 |
+
|
9 |
+
@st.cache_data(experimental_allow_widgets=True)
|
10 |
+
def index_document(uploaded_file):
|
11 |
+
|
12 |
+
if uploaded_file is not None:
|
13 |
+
# Specify the folder path where you want to store the uploaded file in the 'assets' folder
|
14 |
+
assets_folder = "assets/uploaded_files"
|
15 |
+
if not os.path.exists(assets_folder):
|
16 |
+
os.makedirs(assets_folder)
|
17 |
+
|
18 |
+
# Save the uploaded file to the specified folder
|
19 |
+
file_path = os.path.join(assets_folder, uploaded_file.name)
|
20 |
+
with open(file_path, "wb") as f:
|
21 |
+
f.write(uploaded_file.getvalue())
|
22 |
+
|
23 |
+
file_name = os.path.join(assets_folder, uploaded_file.name)
|
24 |
+
st.success(f"File '{file_name}' uploaded !")
|
25 |
+
|
26 |
+
with st.spinner("Indexing document... This is a free CPU version and may take a while⏳"):
|
27 |
+
llm_model.create_vector_db(file_name, instructor_embeddings)
|
28 |
+
|
29 |
+
return file_name
|
30 |
+
else:
|
31 |
+
return None
|
32 |
+
|
33 |
+
|
34 |
+
def load_lottieurl(url: str):
|
35 |
+
r = requests.get(url)
|
36 |
+
if r.status_code != 200:
|
37 |
+
return None
|
38 |
+
return r.json()
|
39 |
+
|
40 |
+
|
41 |
+
def is_query_valid(query: str) -> bool:
|
42 |
+
if not query:
|
43 |
+
st.error("Please enter a question!")
|
44 |
+
return False
|
45 |
+
return True
|
46 |
+
|
47 |
+
|
48 |
+
# Function to load model parameters
|
49 |
+
@st.cache_resource()
|
50 |
+
def load_model():
|
51 |
+
return llm_model.load_model_params()
|
52 |
+
|
53 |
+
st.set_page_config(page_title="Document QA Bot")
|
54 |
+
lottie_book = load_lottieurl("https://assets4.lottiefiles.com/temp/lf20_aKAfIn.json")
|
55 |
+
st_lottie(lottie_book, speed=1, height=200, key="initial")
|
56 |
+
# Place the title below the Lottie animation
|
57 |
+
st.title("PDF Q&A Bot 🤖")
|
58 |
+
|
59 |
+
# Left Sidebar
|
60 |
+
sidebar.sidebar()
|
61 |
+
# st.sidebar.header("Upload PDF")
|
62 |
+
|
63 |
+
# load model parameters
|
64 |
+
llm, instructor_embeddings = load_model()
|
65 |
+
# Upload file through Streamlit
|
66 |
+
uploaded_file = st.file_uploader("Upload a file", type=["pdf", "doc", "docx", "txt"])
|
67 |
+
|
68 |
+
filename = index_document(uploaded_file)
|
69 |
+
print(filename)
|
70 |
+
|
71 |
+
if not filename:
|
72 |
+
st.stop()
|
73 |
+
|
74 |
+
|
75 |
+
with st.form(key="qa_form"):
|
76 |
+
query = st.text_area("Ask a question about the document")
|
77 |
+
submit = st.form_submit_button("Submit")
|
78 |
+
|
79 |
+
if submit:
|
80 |
+
if not is_query_valid(query):
|
81 |
+
st.stop()
|
82 |
+
|
83 |
+
# Output Columns
|
84 |
+
answer_col, sources_col = st.columns(2)
|
85 |
+
|
86 |
+
qa_chain = llm_model.document_parser(instructor_embeddings, llm)
|
87 |
+
result = qa_chain(query)
|
88 |
+
|
89 |
+
with answer_col:
|
90 |
+
st.markdown("#### Answer")
|
91 |
+
st.markdown(result["result"])
|
92 |
+
|
93 |
+
with sources_col:
|
94 |
+
st.markdown("#### Sources")
|
95 |
+
if not ("i don't know" in result["result"].lower()):
|
96 |
+
for source in result["source_documents"]:
|
97 |
+
st.markdown(source.page_content)
|
98 |
+
st.markdown(source.metadata["source"])
|
99 |
+
st.markdown("--------------------------")
|
llm_model.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.vectorstores import FAISS
|
2 |
+
from langchain.llms import GooglePalm
|
3 |
+
from langchain.document_loaders import PyPDFLoader
|
4 |
+
from langchain.document_loaders import TextLoader
|
5 |
+
from langchain.document_loaders import Docx2txtLoader
|
6 |
+
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
7 |
+
from langchain.prompts import PromptTemplate
|
8 |
+
from langchain.chains import RetrievalQA
|
9 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
+
import os
|
11 |
+
from dotenv import load_dotenv
|
12 |
+
|
13 |
+
vector_index_path = "assets/vectordb/faiss_index"
|
14 |
+
|
15 |
+
|
16 |
+
def load_env_variables():
|
17 |
+
load_dotenv() # take environment variables from .env
|
18 |
+
|
19 |
+
|
20 |
+
def create_vector_db(filename, instructor_embeddings):
|
21 |
+
|
22 |
+
if filename.endswith(".pdf"):
|
23 |
+
loader = PyPDFLoader(file_path=filename)
|
24 |
+
elif filename.endswith(".doc") or filename.endswith(".docx"):
|
25 |
+
loader = Docx2txtLoader(filename)
|
26 |
+
elif filename.endswith("txt") or filename.endswith("TXT"):
|
27 |
+
loader = TextLoader(filename)
|
28 |
+
|
29 |
+
# Split documents
|
30 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=10)
|
31 |
+
splits = text_splitter.split_documents(loader.load())
|
32 |
+
|
33 |
+
# data = loader.load()
|
34 |
+
|
35 |
+
# Create a FAISS instance for vector database from 'data'
|
36 |
+
vectordb = FAISS.from_documents(documents=splits,
|
37 |
+
embedding=instructor_embeddings)
|
38 |
+
|
39 |
+
# Save vector database locally
|
40 |
+
vectordb.save_local(vector_index_path)
|
41 |
+
|
42 |
+
|
43 |
+
def get_qa_chain(instructor_embeddings, llm):
|
44 |
+
|
45 |
+
# Load the vector database from the local folder
|
46 |
+
vectordb = FAISS.load_local(vector_index_path, instructor_embeddings)
|
47 |
+
|
48 |
+
# Create a retriever for querying the vector database
|
49 |
+
retriever = vectordb.as_retriever(search_type="similarity")
|
50 |
+
|
51 |
+
prompt_template = """
|
52 |
+
You are a question answer agent and you must strictly follow below prompt template.
|
53 |
+
Given the following context and a question, generate an answer based on this context only.
|
54 |
+
In the answer try to provide as much text as possible from "response" section in the source document context without making much changes.
|
55 |
+
Keep answers brief and well-structured. Do not give one word answers.
|
56 |
+
If the answer is not found in the context, kindly state "I don't know." Don't try to make up an answer.
|
57 |
+
|
58 |
+
CONTEXT: {context}
|
59 |
+
|
60 |
+
QUESTION: {question}"""
|
61 |
+
|
62 |
+
PROMPT = PromptTemplate(
|
63 |
+
template=prompt_template, input_variables=["context", "question"]
|
64 |
+
)
|
65 |
+
|
66 |
+
chain = RetrievalQA.from_chain_type(llm=llm,
|
67 |
+
chain_type="stuff", # or map-reduce
|
68 |
+
retriever=retriever,
|
69 |
+
input_key="query",
|
70 |
+
return_source_documents=True, # return source document from the vector db
|
71 |
+
chain_type_kwargs={"prompt": PROMPT},
|
72 |
+
verbose=True)
|
73 |
+
|
74 |
+
return chain
|
75 |
+
|
76 |
+
|
77 |
+
def load_model_params():
|
78 |
+
|
79 |
+
load_env_variables()
|
80 |
+
# Create Google Palm LLM model
|
81 |
+
llm = GooglePalm(google_api_key=os.environ["GOOGLE_API_KEY"], temperature=0.1)
|
82 |
+
# # Initialize instructor embeddings using the Hugging Face model
|
83 |
+
instructor_embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-large")
|
84 |
+
|
85 |
+
return llm, instructor_embeddings
|
86 |
+
|
87 |
+
|
88 |
+
def document_parser(instructor_embeddings, llm):
|
89 |
+
|
90 |
+
chain = get_qa_chain(instructor_embeddings=instructor_embeddings, llm=llm)
|
91 |
+
|
92 |
+
return chain
|
requirements.txt
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langchain==0.0.284
|
2 |
+
python-dotenv==1.0.0
|
3 |
+
tiktoken==0.4.0
|
4 |
+
faiss-cpu==1.7.4
|
5 |
+
protobuf~=3.19.0
|
6 |
+
pypdf
|
7 |
+
google-generativeai
|
8 |
+
InstructorEmbedding
|
9 |
+
sentence-transformers
|
10 |
+
streamlit
|
11 |
+
frontend
|
12 |
+
tools
|
13 |
+
docx2txt
|
sidebar.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from streamlit_lottie import st_lottie
|
3 |
+
|
4 |
+
|
5 |
+
def faq():
|
6 |
+
st.markdown(
|
7 |
+
"""
|
8 |
+
# FAQ
|
9 |
+
## How does Document Q&A Bot work?
|
10 |
+
When you upload a document (in Pdf, word, csv or txt format), it will be divided into smaller chunks
|
11 |
+
and stored in a special type of database called a vector index
|
12 |
+
that allows for semantic search and retrieval.
|
13 |
+
|
14 |
+
When you ask a question, our Q&A bot will first look through the document chunks and find the
|
15 |
+
most relevant ones using the vector index. Then, it will use open-source LLM model named Google Palm
|
16 |
+
and will provide the final answer.
|
17 |
+
|
18 |
+
## Is my data safe?
|
19 |
+
Yes, your data is safe. Our bot does not store your documents or
|
20 |
+
questions. All uploaded data is deleted after you close the browser tab.
|
21 |
+
|
22 |
+
## Why does it take so long to index my document?
|
23 |
+
Since, this is a sample QA bot project that uses open-source model
|
24 |
+
and doesn't have much resource capabilities like GPU, it may take time
|
25 |
+
to index your document based on the size of the document.
|
26 |
+
|
27 |
+
## Are the answers 100% accurate?
|
28 |
+
No, the answers are not 100% accurate.
|
29 |
+
But for most use cases, our QA bot is very accurate and can answer
|
30 |
+
most questions. Always check with the sources to make sure that the answers
|
31 |
+
are correct.
|
32 |
+
"""
|
33 |
+
)
|
34 |
+
|
35 |
+
|
36 |
+
def sidebar():
|
37 |
+
with st.sidebar:
|
38 |
+
st.markdown("## Google Palm")
|
39 |
+
|
40 |
+
st.success('API key already provided!', icon='✅')
|
41 |
+
|
42 |
+
st.markdown(
|
43 |
+
"## How to use QA bot\n"
|
44 |
+
"1. Upload a pdf, docx, or a txt file📄\n"
|
45 |
+
"2. Ask questions about the document💬\n"
|
46 |
+
)
|
47 |
+
|
48 |
+
# st.session_state["OPENAI_API_KEY"] = api_key_input
|
49 |
+
|
50 |
+
st.markdown("---")
|
51 |
+
st.markdown("# About")
|
52 |
+
st.markdown(
|
53 |
+
"🤖 QA bot allows you to ask questions about your "
|
54 |
+
"documents and get accurate answers with citations. "
|
55 |
+
)
|
56 |
+
|
57 |
+
st.markdown("Created by [Krishna Kumar](https://www.linkedin.com/in/krishna-kumar-yadav-726831105/)")
|
58 |
+
st.markdown("---")
|
59 |
+
|
60 |
+
faq()
|