Spaces:
Runtime error
Runtime error
File size: 5,025 Bytes
f5ad77e 9d6ff9a f5ad77e 9d6ff9a f5ad77e 9d6ff9a f5ad77e 9d6ff9a f5ad77e 9d6ff9a f5ad77e 9d6ff9a f5ad77e 9d6ff9a f5ad77e 9d6ff9a f5ad77e 9d6ff9a f5ad77e 9d6ff9a f5ad77e 9d6ff9a f5ad77e 9d6ff9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
import os
import pandas as pd
import requests
import json
from io import StringIO
from datetime import datetime
from src.assets.text_content import REPO
def get_github_data():
"""
Read and process data from CSV files hosted on GitHub. - https://github.com/clembench/clembench-runs
Returns:
github_data (dict): Dictionary containing:
- "text": List of DataFrames for each version's textual leaderboard data.
- "multimodal": List of DataFrames for each version's multimodal leaderboard data.
- "date": Formatted date of the latest version in "DD Month YYYY" format.
"""
base_repo = REPO
json_url = base_repo + "benchmark_runs.json"
response = requests.get(json_url)
# Check if the JSON file request was successful
if response.status_code != 200:
print(f"Failed to read JSON file: Status Code: {response.status_code}")
return None, None, None, None
json_data = response.json()
versions = json_data['versions']
# Sort version names - latest first
version_names = sorted(
[ver['version'] for ver in versions],
key=lambda v: float(v[1:]),
reverse=True
)
print(f"Found {len(version_names)} versions from get_github_data(): {version_names}.")
# Get Last updated date of the latest version
latest_version = version_names[0]
latest_date = next(
ver['date'] for ver in versions if ver['version'] == latest_version
)
formatted_date = datetime.strptime(latest_date, "%Y/%m/%d").strftime("%d %b %Y")
# Get Leaderboard data - for text-only + multimodal
github_data = {}
# Collect Dataframes
text_dfs = []
mm_dfs = []
for version in version_names:
# Collect CSV data in descending order of clembench-runs versions
# Collect Text-only data
text_url = f"{base_repo}{version}/results.csv"
csv_response = requests.get(text_url)
if csv_response.status_code == 200:
df = pd.read_csv(StringIO(csv_response.text))
df = process_df(df)
df = df.sort_values(by=df.columns[1], ascending=False) # Sort by clemscore column
text_dfs.append(df)
else:
print(f"Failed to read Text-only leaderboard CSV file for version: {version}. Status Code: {csv_response.status_code}")
# Collect Multimodal data
if float(version[1:]) >= 1.6:
mm_url = f"{base_repo}{version}_multimodal/results.csv"
mm_response = requests.get(mm_url)
if mm_response.status_code == 200:
df = pd.read_csv(StringIO(mm_response.text))
df = process_df(df)
df = df.sort_values(by=df.columns[1], ascending=False) # Sort by clemscore column
mm_dfs.append(df)
else:
print(f"Failed to read multimodal leaderboard CSV file for version: {version}: Status Code: {csv_response.status_code}. Please ignore this message if multimodal results are not available for this version")
github_data["text"] = text_dfs
github_data["multimodal"] = mm_dfs
github_data["date"] = formatted_date
return github_data
def process_df(df: pd.DataFrame) -> pd.DataFrame:
"""
Process dataframe:
- Convert datatypes to sort by "float" instead of "str"
- Remove repetition in model names
- Update column names
Args:
df: Unprocessed Dataframe (after using update_cols)
Returns:
df: Processed Dataframe
"""
# Convert column values to float, apart from the model names column
for col in df.columns[1:]:
df[col] = pd.to_numeric(df[col], errors='coerce')
# Remove repetition in model names
df[df.columns[0]] = df[df.columns[0]].str.replace('-t0.0', '', regex=True)
df[df.columns[0]] = df[df.columns[0]].apply(lambda x: '--'.join(set(x.split('--'))))
# Update column names
custom_column_names = ['Model', 'Clemscore', '% Played', 'Quality Score']
for i, col in enumerate(df.columns[4:]): # Start Capitalizing from the 5th column
parts = col.split(',')
custom_name = f"{parts[0].strip().capitalize()} {parts[1].strip()}"
custom_column_names.append(custom_name)
# Rename columns
df.columns = custom_column_names
return df
def query_search(df: pd.DataFrame, query: str) -> pd.DataFrame:
"""
Filter the dataframe based on the search query.
Args:
df (pd.DataFrame): Unfiltered dataframe.
query (str): A string of queries separated by ";".
Returns:
pd.DataFrame: Filtered dataframe containing searched queries in the 'Model' column.
"""
if not query.strip(): # Reset Dataframe if empty query is passed
return df
queries = [q.strip().lower() for q in query.split(';') if q.strip()] # Normalize and split queries
# Filter dataframe based on queries in 'Model' column
filtered_df = df[df['Model'].str.lower().str.contains('|'.join(queries))]
return filtered_df
|