# -*- coding: utf-8 -*- """Fruit_Classifier_app.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1wFmOPbrpLNAJxJsRfdiNoE_r1f8brR6M ## FRUIT CLASSIFICATION APP """ !pip install gradio !pip install -U albumentations !pip install -U albumentations !pip install opencv-python==4.5.4.60 !pip install timm==0.6.2.dev0 #Start by connecting gdrive into the google colab from google.colab import drive drive.mount('/content/gdrive') path = '/content/gdrive/MyDrive/Fruit_Project/' import gradio as gr from fastai.vision.all import * import skimage import pathlib from PIL import Image import albumentations from albumentations.pytorch import ToTensorV2 import timm plt = platform.system() if plt == 'Linux': pathlib.WindowsPath = pathlib.PosixPath # !unzip -o -q /content/gdrive/MyDrive/sign_prediction/ModImages -d Images/ class AlbumentationsTransform (RandTransform): split_idx,order=None,2 def __init__(self, train_aug, valid_aug): store_attr() def before_call(self, b, split_idx): self.idx = split_idx def encodes(self, img: PILImage): if self.idx == 0: aug_img = self.train_aug(image=np.array(img))['image'] else: aug_img = self.valid_aug(image=np.array(img))['image'] return PILImage.create(aug_img) def get_valid_aug(): return albumentations.Compose([ albumentations.Resize(224, 224), ], p=1.0) learn = load_learner(path + 'fruit_model_v2.pkl') labels = learn.dls.vocab def predict(img): pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} # predict('/content/gdrive/MyDrive/Fruit_Project/Onion.jpg') title = "Fruit and Vegetation Classifier" description = '''A simple app to classify various fruits and vegetables ''' examples = [[path + 'Onion.jpg'], [path + 'orange.jpg'], [path + 'plum.jpg'], [path + 'tomato.jpg'], [path + 'banana.jpg']] enable_queue = True gr.Interface (fn= predict, inputs=gr.inputs.Image(shape = (224,224)), outputs= gr.outputs.Label(num_top_classes =3), title = title, description = description, examples = examples, flagging_options=["Incorrect Prediction"], enable_queue = enable_queue).launch()