Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -6,11 +6,13 @@ import gradio as gr
|
|
6 |
import numpy as np
|
7 |
import torch
|
8 |
from PIL import Image
|
9 |
-
from diffusers import DiffusionPipeline, StableDiffusionXLPipeline,
|
10 |
from custom_pipeline import CosStableDiffusionXLInstructPix2PixPipeline
|
11 |
from huggingface_hub import hf_hub_download
|
12 |
from huggingface_hub import InferenceClient
|
|
|
13 |
|
|
|
14 |
dtype = torch.float16
|
15 |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
16 |
|
@@ -21,6 +23,8 @@ pipe.set_adapters("lora")
|
|
21 |
pipe.to("cuda")
|
22 |
|
23 |
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", vae=vae, torch_dtype=torch.float16, use_safetensors=True, variant="fp16")
|
|
|
|
|
24 |
refiner.to("cuda")
|
25 |
|
26 |
help_text = """
|
@@ -30,11 +34,30 @@ To optimize image results:
|
|
30 |
- Experiment with different **random seeds** and **CFG values** for varied outcomes.
|
31 |
- **Rephrase your instructions** for potentially better results.
|
32 |
- **Increase the number of steps** for enhanced edits.
|
33 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
# Image Editor
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
# Generator
|
40 |
@spaces.GPU(duration=30, queue=False)
|
@@ -45,7 +68,7 @@ def king(type ,
|
|
45 |
randomize_seed: bool = False,
|
46 |
seed: int = 25,
|
47 |
text_cfg_scale: float = 7.3,
|
48 |
-
image_cfg_scale: float = 1.
|
49 |
width: int = 1024,
|
50 |
height: int = 1024,
|
51 |
guidance_scale: float = 6,
|
@@ -172,7 +195,7 @@ with gr.Blocks(css=css) as demo:
|
|
172 |
|
173 |
with gr.Row():
|
174 |
text_cfg_scale = gr.Number(value=7.3, step=0.1, label="Text CFG", interactive=True)
|
175 |
-
image_cfg_scale = gr.Number(value=1.
|
176 |
guidance_scale = gr.Number(value=6.0, step=0.1, label="Image Generation Guidance Scale", interactive=True)
|
177 |
steps = gr.Number(value=25, step=1, label="Steps", interactive=True)
|
178 |
randomize_seed = gr.Radio(
|
|
|
6 |
import numpy as np
|
7 |
import torch
|
8 |
from PIL import Image
|
9 |
+
from diffusers import DiffusionPipeline, StableDiffusionXLPipeline, EDMEulerScheduler, StableDiffusionXLInstructPix2PixPipeline, AutoencoderKL
|
10 |
from custom_pipeline import CosStableDiffusionXLInstructPix2PixPipeline
|
11 |
from huggingface_hub import hf_hub_download
|
12 |
from huggingface_hub import InferenceClient
|
13 |
+
from diffusers import StableDiffusion3Pipeline, SD3Transformer2DModel, FlowMatchEulerDiscreteScheduler
|
14 |
|
15 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
dtype = torch.float16
|
17 |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
18 |
|
|
|
23 |
pipe.to("cuda")
|
24 |
|
25 |
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", vae=vae, torch_dtype=torch.float16, use_safetensors=True, variant="fp16")
|
26 |
+
refiner.load_lora_weights("KingNish/Better-Image-XL-Lora", weight_name="example-03.safetensors", adapter_name="lora")
|
27 |
+
refiner.set_adapters("lora")
|
28 |
refiner.to("cuda")
|
29 |
|
30 |
help_text = """
|
|
|
34 |
- Experiment with different **random seeds** and **CFG values** for varied outcomes.
|
35 |
- **Rephrase your instructions** for potentially better results.
|
36 |
- **Increase the number of steps** for enhanced edits.
|
37 |
+
"""
|
38 |
+
|
39 |
+
def set_timesteps_patched(self, num_inference_steps: int, device = None):
|
40 |
+
self.num_inference_steps = num_inference_steps
|
41 |
+
|
42 |
+
ramp = np.linspace(0, 1, self.num_inference_steps)
|
43 |
+
sigmas = torch.linspace(math.log(self.config.sigma_min), math.log(self.config.sigma_max), len(ramp)).exp().flip(0)
|
44 |
+
|
45 |
+
sigmas = (sigmas).to(dtype=torch.float32, device=device)
|
46 |
+
self.timesteps = self.precondition_noise(sigmas)
|
47 |
+
|
48 |
+
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
|
49 |
+
self._step_index = None
|
50 |
+
self._begin_index = None
|
51 |
+
self.sigmas = self.sigmas.to("cpu")
|
52 |
|
53 |
# Image Editor
|
54 |
+
edit_file = hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl_edit.safetensors")
|
55 |
+
EDMEulerScheduler.set_timesteps = set_timesteps_patched
|
56 |
+
pipe_edit = StableDiffusionXLInstructPix2PixPipeline.from_single_file(
|
57 |
+
edit_file, num_in_channels=8, is_cosxl_edit=True, vae=vae, torch_dtype=torch.float16,
|
58 |
+
)
|
59 |
+
pipe_edit.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction")
|
60 |
+
pipe_edit.to("cuda")
|
61 |
|
62 |
# Generator
|
63 |
@spaces.GPU(duration=30, queue=False)
|
|
|
68 |
randomize_seed: bool = False,
|
69 |
seed: int = 25,
|
70 |
text_cfg_scale: float = 7.3,
|
71 |
+
image_cfg_scale: float = 1.7,
|
72 |
width: int = 1024,
|
73 |
height: int = 1024,
|
74 |
guidance_scale: float = 6,
|
|
|
195 |
|
196 |
with gr.Row():
|
197 |
text_cfg_scale = gr.Number(value=7.3, step=0.1, label="Text CFG", interactive=True)
|
198 |
+
image_cfg_scale = gr.Number(value=1.7, step=0.1,label="Image CFG", interactive=True)
|
199 |
guidance_scale = gr.Number(value=6.0, step=0.1, label="Image Generation Guidance Scale", interactive=True)
|
200 |
steps = gr.Number(value=25, step=1, label="Steps", interactive=True)
|
201 |
randomize_seed = gr.Radio(
|