File size: 9,663 Bytes
33192bb ea65479 55953fe 33192bb 62d88ea 33192bb eb9c657 33192bb 2aba82b 33192bb f27ba88 8d6521c 33192bb 8d6521c f27ba88 33192bb 86ea709 33192bb 0b58beb 052ec28 33192bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
import librosa
import tensorflow as tf
from tensorflow.keras.models import model_from_json
import soundfile as sf
import numpy as np
import os
import scipy
from scipy.io import wavfile
import gradio as gr
def audio_to_audio_frame_stack(sound_data, frame_length, hop_length_frame):
"""This function take an audio and split into several frame
in a numpy matrix of size (nb_frame,frame_length)"""
sequence_sample_length = sound_data.shape[0]
sound_data_list = [sound_data[start:start + frame_length] for start in range(
0, sequence_sample_length - frame_length + 1, hop_length_frame)] # get sliding windows
sound_data_array = np.vstack(sound_data_list)
return sound_data_array
def audio_files_to_numpy(audio_dir, list_audio_files, sample_rate, frame_length, hop_length_frame, min_duration):
"""This function take audio files of a directory and merge them
in a numpy matrix of size (nb_frame,frame_length) for a sliding window of size hop_length_frame"""
list_sound_array = []
for file in list_audio_files:
# open the audio file
y, sr = librosa.load(os.path.join(audio_dir, file), sr=sample_rate)
total_duration = librosa.get_duration(y=y, sr=sr)
if (total_duration >= min_duration):
list_sound_array.append(audio_to_audio_frame_stack(
y, frame_length, hop_length_frame))
else:
print(
f"The following file {os.path.join(audio_dir,file)} is below the min duration")
return np.vstack(list_sound_array)
def blend_noise_randomly(voice, noise, nb_samples, frame_length):
"""This function takes as input numpy arrays representing frames
of voice sounds, noise sounds and the number of frames to be created
and return numpy arrays with voice randomly blend with noise"""
prod_voice = np.zeros((nb_samples, frame_length))
prod_noise = np.zeros((nb_samples, frame_length))
prod_noisy_voice = np.zeros((nb_samples, frame_length))
for i in range(nb_samples):
id_voice = np.random.randint(0, voice.shape[0])
id_noise = np.random.randint(0, noise.shape[0])
level_noise = np.random.uniform(0.2, 0.8)
prod_voice[i, :] = voice[id_voice, :]
prod_noise[i, :] = level_noise * noise[id_noise, :]
prod_noisy_voice[i, :] = prod_voice[i, :] + prod_noise[i, :]
return prod_voice, prod_noise, prod_noisy_voice
def audio_to_magnitude_db_and_phase(n_fft, hop_length_fft, audio):
"""This function takes an audio and convert into spectrogram,
it returns the magnitude in dB and the phase"""
stftaudio = librosa.stft(audio, n_fft=n_fft, hop_length=hop_length_fft)
stftaudio_magnitude, stftaudio_phase = librosa.magphase(stftaudio)
stftaudio_magnitude_db = librosa.amplitude_to_db(
stftaudio_magnitude, ref=np.max)
return stftaudio_magnitude_db, stftaudio_phase
def numpy_audio_to_matrix_spectrogram(numpy_audio, dim_square_spec, n_fft, hop_length_fft):
"""This function takes as input a numpy audi of size (nb_frame,frame_length), and return
a numpy containing the matrix spectrogram for amplitude in dB and phase. It will have the size
(nb_frame,dim_square_spec,dim_square_spec)"""
nb_audio = numpy_audio.shape[0]
m_mag_db = np.zeros((nb_audio, dim_square_spec, dim_square_spec))
m_phase = np.zeros((nb_audio, dim_square_spec, dim_square_spec), dtype=complex)
for i in range(nb_audio):
m_mag_db[i, :, :], m_phase[i, :, :] = audio_to_magnitude_db_and_phase(
n_fft, hop_length_fft, numpy_audio[i])
return m_mag_db, m_phase
def magnitude_db_and_phase_to_audio(frame_length, hop_length_fft, stftaudio_magnitude_db, stftaudio_phase):
"""This functions reverts a spectrogram to an audio"""
stftaudio_magnitude_rev = librosa.db_to_amplitude(stftaudio_magnitude_db, ref=1.0)
# taking magnitude and phase of audio
audio_reverse_stft = stftaudio_magnitude_rev * stftaudio_phase
audio_reconstruct = librosa.core.istft(audio_reverse_stft, hop_length=hop_length_fft, length=frame_length)
return audio_reconstruct
def matrix_spectrogram_to_numpy_audio(m_mag_db, m_phase, frame_length, hop_length_fft) :
"""This functions reverts the matrix spectrograms to numpy audio"""
list_audio = []
nb_spec = m_mag_db.shape[0]
for i in range(nb_spec):
audio_reconstruct = magnitude_db_and_phase_to_audio(frame_length, hop_length_fft, m_mag_db[i], m_phase[i])
list_audio.append(audio_reconstruct)
return np.vstack(list_audio)
def scaled_in(matrix_spec):
"global scaling apply to noisy voice spectrograms (scale between -1 and 1)"
matrix_spec = (matrix_spec + 46)/50
return matrix_spec
def scaled_ou(matrix_spec):
"global scaling apply to noise models spectrograms (scale between -1 and 1)"
matrix_spec = (matrix_spec -6 )/82
return matrix_spec
def inv_scaled_in(matrix_spec):
"inverse global scaling apply to noisy voices spectrograms"
matrix_spec = matrix_spec * 50 - 46
return matrix_spec
def inv_scaled_ou(matrix_spec):
"inverse global scaling apply to noise models spectrograms"
matrix_spec = matrix_spec * 82 + 6
return matrix_spec
def prediction(weights_path, name_model, audio_dir_prediction, dir_save_prediction, audio_input_prediction,
audio_output_prediction, sample_rate, min_duration, frame_length, hop_length_frame, n_fft, hop_length_fft):
""" This function takes as input pretrained weights, noisy voice sound to denoise, predict
the denoise sound and save it to disk.
"""
# load json and create model
json_file = open(weights_path+'/'+name_model+'.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
loaded_model = model_from_json(loaded_model_json)
# load weights into new model
loaded_model.load_weights(weights_path+'/'+name_model+'.h5')
print("Loaded model from disk")
# Extracting noise and voice from folder and convert to numpy
audio = audio_files_to_numpy(audio_dir_prediction, audio_input_prediction, sample_rate,
frame_length, hop_length_frame, min_duration)
# audio = audioData
#Dimensions of squared spectrogram
dim_square_spec = int(n_fft / 2) + 1
print(dim_square_spec)
# Create Amplitude and phase of the sounds
m_amp_db_audio, m_pha_audio = numpy_audio_to_matrix_spectrogram(
audio, dim_square_spec, n_fft, hop_length_fft)
#global scaling to have distribution -1/1
X_in = scaled_in(m_amp_db_audio)
#Reshape for prediction
X_in = X_in.reshape(X_in.shape[0],X_in.shape[1],X_in.shape[2],1)
#Prediction using loaded network
X_pred = loaded_model.predict(X_in)
#Rescale back the noise model
inv_sca_X_pred = inv_scaled_ou(X_pred)
#Remove noise model from noisy speech
X_denoise = m_amp_db_audio - inv_sca_X_pred[:,:,:,0]
#Reconstruct audio from denoised spectrogram and phase
print(X_denoise.shape)
print(m_pha_audio.shape)
print(frame_length)
print(hop_length_fft)
audio_denoise_recons = matrix_spectrogram_to_numpy_audio(X_denoise, m_pha_audio, frame_length, hop_length_fft)
#Number of frames
nb_samples = audio_denoise_recons.shape[0]
#Save all frames in one file
denoise_long = audio_denoise_recons.reshape(1, nb_samples * frame_length)*10
# librosa.output.write_wav(dir_save_prediction + audio_output_prediction, denoise_long[0, :], sample_rate)
print(audio_output_prediction)
sf.write(audio_output_prediction , denoise_long[0, :], sample_rate)
def denoise_audio(audioName):
sr, data = audioName
sf.write("temp.wav",data, sr)
testNo = "temp"
audio_dir_prediction = os.path.abspath("/")+ str(testNo) +".wav"
sample_rate, data = audioName[0], audioName[1]
len_data = len(data) # holds length of the numpy array
t = len_data / sample_rate # returns duration but in floats
print("t:",t)
weights_path = os.path.abspath("./")
name_model = "model_unet"
audio_dir_prediction = os.path.abspath("./")
dir_save_prediction = os.path.abspath("./")
audio_output_prediction = "test.wav"
audio_input_prediction = ["temp.wav"]
sample_rate = 8000
min_duration = t
frame_length = 8064
hop_length_frame = 8064
n_fft = 255
hop_length_fft = 63
dim_square_spec = int(n_fft / 2) + 1
prediction(weights_path, name_model, audio_dir_prediction, dir_save_prediction, audio_input_prediction,
audio_output_prediction, sample_rate, min_duration, frame_length, hop_length_frame, n_fft, hop_length_fft)
print(audio_output_prediction)
return audio_output_prediction
examples = [
[os.path.abspath("crowdNoise.wav")],
[os.path.abspath("CrowdNoise2.wav")],
[os.path.abspath("whiteNoise.wav")]
]
iface = gr.Interface(fn = denoise_audio,
inputs = 'audio',
outputs = 'audio',
title = 'audio to denoised Audio Application',
description = 'A simple application to denoise audio speech usinf UNet deep learning model. Upload your own audio, or click one of the examples to load them.',
article =
'''<div>
<p style="text-align: center"> All you need to do is to upload the pdf file and hit submit, then wait for compiling. After that click on Play/Pause for listing to the audio. The audio is saved in a wav format.</p>
</div>''',
examples=examples
)
iface.launch() |