import os import glob import gradio as gr import shutil from ultralytics import YOLO # Initialize YOLO model model = YOLO('./best_train2.pt') # Class to color mapping ClassToColorMapping = { 0: "black", 1: "gray", 2: "green", 3: "purple", 4: "red" } def check_ffmpeg(): """Check if ffmpeg is installed.""" if shutil.which("ffmpeg") is None: raise EnvironmentError("ffmpeg is not installed or not found in the system PATH. Please install ffmpeg to proceed.") def convert_to_mp4(file): """Convert a .avi video file to .mp4 format.""" mp4_file = f"{file[:-4]}.mp4" os.system(f"ffmpeg -y -i \"{file}\" -vcodec libx264 \"{mp4_file}\"") os.remove(file) # Remove the original .avi file after conversion return mp4_file def process_video(video_path, output_option): # Check if ffmpeg is installed check_ffmpeg() # Determine if the video needs to be saved save_video = output_option in ["Video", "Both"] # Run the YOLO model on the video, specifying the tracker configuration and save option results = model.track( video_path, save=save_video, tracker="bytetrack.yaml", half=False, vid_stride=1, iou=0.75, conf=0.25 ) # Initialize a dictionary to store unique IDs for each color chip_ids = {color: set() for color in ClassToColorMapping.values()} # Check if results are None or if there are no results if results is None or len(results) == 0: raise Exception("No detections were found in the video.") # Track the unique IDs for each color for result in results: # Check if result.boxes exists and has valid id and cls attributes if result.boxes is None or result.boxes.id is None or result.boxes.cls is None: continue # Skip if no boxes or if ids or classes are None # Check if the id and cls tensors are not empty if result.boxes.id.numel() == 0 or result.boxes.cls.numel() == 0: continue # Skip if ids or classes are empty tensors for cls, id_ in zip(result.boxes.cls, result.boxes.id): if cls is None or id_ is None: continue # Skip if class or id is None color = ClassToColorMapping.get(int(cls.item()), None) # Map class label to color if color: chip_ids[color].add(int(id_.item())) # Add the unique ID to the set # Convert sets to counts of unique IDs chip_counts_by_color = {color: len(ids) for color, ids in chip_ids.items()} # If the user only wants the count, return it immediately if output_option == "Count": return chip_counts_by_color, None # Process video saving if required if save_video: video_name = os.path.splitext(os.path.basename(video_path))[0] # Find the latest directory created in 'runs/detect/' output_dir = max(glob.glob('./runs/detect/*'), key=os.path.getmtime) # Find the saved video file in the latest directory with the specific video name video_files = glob.glob(os.path.join(output_dir, f'{video_name}*.avi')) if not video_files: raise Exception(f"No .avi video files found in directory {output_dir} for {video_name}") # Convert each .avi video to .mp4 mp4_files = [] for file in video_files: mp4_file = convert_to_mp4(file) mp4_files.append(mp4_file) matched_mp4_files = [file for file in mp4_files if video_name in file] if not matched_mp4_files: raise Exception(f"No .mp4 video files found in directory {output_dir} after conversion for {video_name}.") # Return video path and chip counts if both are requested if output_option == "Both": return chip_counts_by_color, matched_mp4_files[0] else: return None, matched_mp4_files[0] else: # Return only chip counts if no video is needed return chip_counts_by_color, None # Define Gradio inputs video_input = gr.Video() output_option_input = gr.Radio(choices=["Count", "Video", "Both"], label="Select output type", value="Both") # Set default value to "Both" # Define a single example for the interface examples = [ [os.path.abspath("video_1.mp4"), "Both"] ] video_interface = gr.Interface( fn=process_video, inputs=[video_input, output_option_input], outputs=[gr.JSON(label="Color Counts"), "video"], # Ensure two outputs are defined, using JSON for color counts title="YOLO Video Tracking Application with Color Counting", description="A simple application to track objects in a video using YOLO model and count unique objects by color. Upload your own video, or click one of the examples to load them.", article="""
Upload a video file and select the type of output you want: unique object counts by color, processed video, or both. Then, hit submit to process the video.