Spaces:
Sleeping
Sleeping
import os | |
import glob | |
import gradio as gr | |
import shutil | |
from ultralytics import YOLO | |
# Initialize YOLO model | |
model = YOLO('./best.pt') | |
def check_ffmpeg(): | |
"""Check if ffmpeg is installed.""" | |
if shutil.which("ffmpeg") is None: | |
raise EnvironmentError("ffmpeg is not installed or not found in the system PATH. Please install ffmpeg to proceed.") | |
def process_video(video_path, output_option): | |
# Check if ffmpeg is installed | |
check_ffmpeg() | |
# Run the YOLO model on the video, specifying the tracker configuration | |
results = model.track(video_path, save=True, tracker="bytetrack.yaml", persist=True) | |
# Get the video file name without extension and directory | |
video_name = os.path.splitext(os.path.basename(video_path))[0] | |
# Find the latest directory created in 'runs/detect/' | |
output_dir = max(glob.glob('./runs/detect/*'), key=os.path.getmtime) | |
# Find the saved video file in the latest directory with the specific video name | |
video_files = glob.glob(os.path.join(output_dir, f'{video_name}*.avi')) | |
if not video_files: | |
raise Exception(f"No .avi video files found in directory {output_dir} for {video_name}") | |
# Convert the video to mp4 | |
mp4_files = [] | |
for file in video_files: | |
mp4_file = f"{file[:-4]}.mp4" | |
# Quote the file paths to handle spaces and overwrite without prompt | |
os.system(f"ffmpeg -y -i \"{file}\" -vcodec libx264 \"{mp4_file}\"") | |
os.remove(file) # Remove the original .avi file after conversion | |
mp4_files.append(mp4_file) | |
# Check again for the converted .mp4 video files specifically for the processed video | |
matched_mp4_files = [file for file in mp4_files if video_name in file] | |
if not matched_mp4_files: | |
raise Exception(f"No .mp4 video files found in directory {output_dir} after conversion for {video_name}.") | |
# Initialize object count | |
object_count = 0 | |
# Calculate object count based on results | |
for result in results: | |
if hasattr(result, 'boxes'): | |
object_count += len(result.boxes) | |
# Set default outputs | |
video_output = matched_mp4_files[0] if matched_mp4_files else None | |
count_output = object_count | |
# Determine the output based on user's choice | |
if output_option == "Count": | |
return count_output, None | |
elif output_option == "Video": | |
return None, video_output | |
elif output_option == "Both": | |
return count_output, video_output | |
# Define Gradio inputs | |
video_input = gr.Video() | |
output_option_input = gr.Radio(choices=["Count", "Video", "Both"], label="Select output type") | |
# Define a single example for the interface | |
examples = [ | |
[os.path.abspath("example_video1.mp4"), "Both"] | |
] | |
video_interface = gr.Interface( | |
fn=process_video, | |
inputs=[video_input, output_option_input], | |
outputs=[gr.Textbox(label="Object Count"), "video"], # Ensure two outputs are defined | |
title="YOLO Video Tracking Application", | |
description="A simple application to track objects in a video using YOLO model. Upload your own video, or click one of the examples to load them.", | |
article="""<div> | |
<p style="text-align: center">Upload a video file and select the type of output you want: object count, processed video, or both. Then, hit submit to process the video.</p> | |
</div>""", | |
examples=examples, | |
cache_examples=True # Disable caching to speed up launch | |
) | |
# Deploy the interface with share enabled | |
gr.TabbedInterface([video_interface], ["Track Video"]).launch(share=True) | |