import gradio as gr import os, gc, torch from datetime import datetime from huggingface_hub import hf_hub_download from pynvml import * nvmlInit() gpu_h = nvmlDeviceGetHandleByIndex(0) ctx_limit = 1024 title1 = "RWKV-4-Raven-7B-v9-Eng99%-Other1%-20230412-ctx8192" os.environ["RWKV_JIT_ON"] = '1' os.environ["RWKV_CUDA_ON"] = '1' # if '1' then use CUDA kernel for seq mode (much faster) from rwkv.model import RWKV model_path1 = hf_hub_download(repo_id="BlinkDL/rwkv-4-raven", filename=f"{title1}.pth") model1 = RWKV(model=model_path1, strategy='cuda fp16i8 *8 -> cuda fp16') from rwkv.utils import PIPELINE, PIPELINE_ARGS pipeline = PIPELINE(model1, "20B_tokenizer.json") import git os.system('git clone https://github.com/Edresson/Coqui-TTS -b multilingual-torchaudio-SE TTS') os.system('pip install -q -e TTS/') os.system('pip install -q torchaudio==0.9.0') os.system('pip install voicefixer --upgrade') from voicefixer import VoiceFixer voicefixer = VoiceFixer() import sys TTS_PATH = "TTS/" # add libraries into environment sys.path.append(TTS_PATH) # set this if TTS is not installed globally import string import time import argparse import json import numpy as np import IPython from IPython.display import Audio from TTS.tts.utils.synthesis import synthesis from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols try: from TTS.utils.audio import AudioProcessor except: from TTS.utils.audio import AudioProcessor from TTS.tts.models import setup_model from TTS.config import load_config from TTS.tts.models.vits import * OUT_PATH = 'out/' # create output path os.makedirs(OUT_PATH, exist_ok=True) # model vars MODEL_PATH = '/home/user/app/best_model_latest.pth.tar' CONFIG_PATH = '/home/user/app/config.json' TTS_LANGUAGES = "/home/user/app/language_ids.json" TTS_SPEAKERS = "/home/user/app/speakers.json" USE_CUDA = torch.cuda.is_available() # load the config C = load_config(CONFIG_PATH) # load the audio processor ap = AudioProcessor(**C.audio) speaker_embedding = None C.model_args['d_vector_file'] = TTS_SPEAKERS C.model_args['use_speaker_encoder_as_loss'] = False model = setup_model(C) model.language_manager.set_language_ids_from_file(TTS_LANGUAGES) # print(model.language_manager.num_languages, model.embedded_language_dim) # print(model.emb_l) cp = torch.load(MODEL_PATH, map_location=torch.device('cpu')) # remove speaker encoder model_weights = cp['model'].copy() for key in list(model_weights.keys()): if "speaker_encoder" in key: del model_weights[key] model.load_state_dict(model_weights) model.eval() if USE_CUDA: model = model.cuda() # synthesize voice use_griffin_lim = False os.system('pip install -q pydub ffmpeg-normalize') CONFIG_SE_PATH = "config_se.json" CHECKPOINT_SE_PATH = "SE_checkpoint.pth.tar" from TTS.tts.utils.speakers import SpeakerManager from pydub import AudioSegment import librosa SE_speaker_manager = SpeakerManager(encoder_model_path=CHECKPOINT_SE_PATH, encoder_config_path=CONFIG_SE_PATH, use_cuda=USE_CUDA) def compute_spec(ref_file): y, sr = librosa.load(ref_file, sr=ap.sample_rate) spec = ap.spectrogram(y) spec = torch.FloatTensor(spec).unsqueeze(0) return spec def greet(Text,Voicetoclone,VoiceMicrophone): text= "%s" % (Text) if Voicetoclone is not None: reference_files= "%s" % (Voicetoclone) print("path url") print(Voicetoclone) sample= str(Voicetoclone) else: reference_files= "%s" % (VoiceMicrophone) print("path url") print(VoiceMicrophone) sample= str(VoiceMicrophone) size= len(reference_files)*sys.getsizeof(reference_files) size2= size / 1000000 if (size2 > 0.012) or len(text)>2000: message="File is greater than 30mb or Text inserted is longer than 2000 characters. Please re-try with smaller sizes." print(message) raise SystemExit("File is greater than 30mb. Please re-try or Text inserted is longer than 2000 characters. Please re-try with smaller sizes.") else: os.system('ffmpeg-normalize $sample -nt rms -t=-27 -o $sample -ar 16000 -f') reference_emb = SE_speaker_manager.compute_d_vector_from_clip(reference_files) model.length_scale = 1 # scaler for the duration predictor. The larger it is, the slower the speech. model.inference_noise_scale = 0.3 # defines the noise variance applied to the random z vector at inference. model.inference_noise_scale_dp = 0.3 # defines the noise variance applied to the duration predictor z vector at inference. text = text model.language_manager.language_id_mapping language_id = 0 print(" > text: {}".format(text)) wav, alignment, _, _ = synthesis( model, text, C, "cuda" in str(next(model.parameters()).device), ap, speaker_id=None, d_vector=reference_emb, style_wav=None, language_id=language_id, enable_eos_bos_chars=C.enable_eos_bos_chars, use_griffin_lim=True, do_trim_silence=False, ).values() print("Generated Audio") IPython.display.display(Audio(wav, rate=ap.sample_rate)) #file_name = text.replace(" ", "_") #file_name = file_name.translate(str.maketrans('', '', string.punctuation.replace('_', ''))) + '.wav' file_name="Audio.wav" out_path = os.path.join(OUT_PATH, file_name) print(" > Saving output to {}".format(out_path)) ap.save_wav(wav, out_path) voicefixer.restore(input=out_path, # input wav file path output="audio1.wav", # output wav file path cuda=True, # whether to use gpu acceleration' mode = 0) # You can try out mode 0, 1, or 2 to find out the best result return "audio1.wav" def generate_prompt(instruction, input=None): if input: return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. # Instruction: {instruction} # Input: {input} # Response: """ else: return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. # Instruction: {instruction} # Response: """ def evaluate( instruction, input=None, # token_count=200, # temperature=1.0, # top_p=0.7, # presencePenalty = 0.1, # countPenalty = 0.1, ): args = PIPELINE_ARGS(temperature = max(0.2, float(1.0)), top_p = float(0.5), alpha_frequency = 0.4, alpha_presence = 0.4, token_ban = [], # ban the generation of some tokens token_stop = [0]) # stop generation whenever you see any token here instruction = instruction.strip() input = input.strip() ctx = generate_prompt(instruction, input) gpu_info = nvmlDeviceGetMemoryInfo(gpu_h) print(f'vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}') all_tokens = [] out_last = 0 out_str = '' occurrence = {} state = None for i in range(int(200)): out, state = model1.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state) for n in occurrence: out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency) token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p) if token in args.token_stop: break all_tokens += [token] if token not in occurrence: occurrence[token] = 1 else: occurrence[token] += 1 tmp = pipeline.decode(all_tokens[out_last:]) if '\ufffd' not in tmp: out_str += tmp yield out_str.strip() out_last = i + 1 gc.collect() torch.cuda.empty_cache() yield out_str.strip() block = gr.Blocks() with block: with gr.Group(): gr.Markdown( """ #
🥳💬💕 - TalktoAI,随时随地,谈天说地!
##
🤖 - 让有人文关怀的AI造福每一个人!AI向善,文明璀璨!TalktoAI - Enable the future!
###
注意❗:请不要输入或生成会对个人以及组织造成侵害的内容,此程序仅供科研、学习及娱乐使用。用户输入或生成的内容与程序开发者无关,请自觉合法合规使用,违反者一切后果自负。
###
Model by [Raven](https://huggingface.co/spaces/BlinkDL/Raven-RWKV-7B). Thanks to [PENG Bo](https://github.com/BlinkDL). Please follow me on [Bilibili](https://space.bilibili.com/501495851?spm_id_from=333.1007.0.0).
""" ) with gr.Box(): with gr.Row().style(mobile_collapse=False, equal_height=True): inp1 = gr.components.Textbox(lines=2, label="说些什么吧(中英皆可,英文对话效果更好)", value="Tell me a joke.") inp2 = gr.components.Textbox(lines=2, label="对话的背景信息(选填,请合理合规使用此程序)", placeholder="none") btn = gr.Button("开始对话吧") texts = gr.Textbox(lines=5, label="Raven的回答") btn.click(evaluate, [inp1, inp2], [texts]) with gr.Box(): with gr.Row().style(mobile_collapse=False, equal_height=True): inp3 = texts inp4 = gr.Audio(source="upload", label = "请上传您喜欢的声音(wav/mp3文件, max. 30mb)", type="filepath") inp5 = gr.Audio(source="microphone", type="filepath", label = '请用麦克风上传您喜欢的声音,与文件上传二选一即可') btn1 = gr.Button("用喜欢的声音听一听吧") out1 = gr.Audio(label="合成的专属声音") btn1.click(greet, [inp3, inp4, inp5], [out1]) gr.HTML(''' ''') block.launch(show_error=True)