Kevin676's picture
Duplicate from Kevin676/Voice-Cloning
07977e9
raw
history blame
6.85 kB
#from turtle import title
import gradio as gr
import git
import os
os.system('git clone https://github.com/Edresson/Coqui-TTS -b multilingual-torchaudio-SE TTS')
os.system('pip install -q -e TTS/')
os.system('pip install -q torchaudio==0.9.0')
os.system('pip install voicefixer --upgrade')
from voicefixer import VoiceFixer
voicefixer = VoiceFixer()
import sys
TTS_PATH = "TTS/"
# add libraries into environment
sys.path.append(TTS_PATH) # set this if TTS is not installed globally
import os
import string
import time
import argparse
import json
import numpy as np
import IPython
from IPython.display import Audio
import torch
import torchaudio
from speechbrain.pretrained import SpectralMaskEnhancement
enhance_model = SpectralMaskEnhancement.from_hparams(
source="speechbrain/metricgan-plus-voicebank",
savedir="pretrained_models/metricgan-plus-voicebank",
#run_opts={"device":"cuda"},
)
from TTS.tts.utils.synthesis import synthesis
from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols
try:
from TTS.utils.audio import AudioProcessor
except:
from TTS.utils.audio import AudioProcessor
from TTS.tts.models import setup_model
from TTS.config import load_config
from TTS.tts.models.vits import *
OUT_PATH = 'out/'
# create output path
os.makedirs(OUT_PATH, exist_ok=True)
# model vars
MODEL_PATH = '/home/user/app/best_model_latest.pth.tar'
CONFIG_PATH = '/home/user/app/config.json'
TTS_LANGUAGES = "/home/user/app/language_ids.json"
TTS_SPEAKERS = "/home/user/app/speakers.json"
USE_CUDA = torch.cuda.is_available()
# load the config
C = load_config(CONFIG_PATH)
# load the audio processor
ap = AudioProcessor(**C.audio)
speaker_embedding = None
C.model_args['d_vector_file'] = TTS_SPEAKERS
C.model_args['use_speaker_encoder_as_loss'] = False
model = setup_model(C)
model.language_manager.set_language_ids_from_file(TTS_LANGUAGES)
# print(model.language_manager.num_languages, model.embedded_language_dim)
# print(model.emb_l)
cp = torch.load(MODEL_PATH, map_location=torch.device('cpu'))
# remove speaker encoder
model_weights = cp['model'].copy()
for key in list(model_weights.keys()):
if "speaker_encoder" in key:
del model_weights[key]
model.load_state_dict(model_weights)
model.eval()
if USE_CUDA:
model = model.cuda()
# synthesize voice
use_griffin_lim = False
os.system('pip install -q pydub ffmpeg-normalize')
CONFIG_SE_PATH = "config_se.json"
CHECKPOINT_SE_PATH = "SE_checkpoint.pth.tar"
from TTS.tts.utils.speakers import SpeakerManager
from pydub import AudioSegment
import librosa
SE_speaker_manager = SpeakerManager(encoder_model_path=CHECKPOINT_SE_PATH, encoder_config_path=CONFIG_SE_PATH, use_cuda=USE_CUDA)
def compute_spec(ref_file):
y, sr = librosa.load(ref_file, sr=ap.sample_rate)
spec = ap.spectrogram(y)
spec = torch.FloatTensor(spec).unsqueeze(0)
return spec
def greet(Text,Voicetoclone,VoiceMicrophone):
text= "%s" % (Text)
if Voicetoclone is not None:
reference_files= "%s" % (Voicetoclone)
print("path url")
print(Voicetoclone)
sample= str(Voicetoclone)
else:
reference_files= "%s" % (VoiceMicrophone)
print("path url")
print(VoiceMicrophone)
sample= str(VoiceMicrophone)
size= len(reference_files)*sys.getsizeof(reference_files)
size2= size / 1000000
if (size2 > 0.012) or len(text)>2000:
message="File is greater than 30mb or Text inserted is longer than 2000 characters. Please re-try with smaller sizes."
print(message)
raise SystemExit("File is greater than 30mb. Please re-try or Text inserted is longer than 2000 characters. Please re-try with smaller sizes.")
else:
os.system('ffmpeg-normalize $sample -nt rms -t=-27 -o $sample -ar 16000 -f')
reference_emb = SE_speaker_manager.compute_d_vector_from_clip(reference_files)
model.length_scale = 1 # scaler for the duration predictor. The larger it is, the slower the speech.
model.inference_noise_scale = 0.3 # defines the noise variance applied to the random z vector at inference.
model.inference_noise_scale_dp = 0.3 # defines the noise variance applied to the duration predictor z vector at inference.
text = text
model.language_manager.language_id_mapping
language_id = 0
print(" > text: {}".format(text))
wav, alignment, _, _ = synthesis(
model,
text,
C,
"cuda" in str(next(model.parameters()).device),
ap,
speaker_id=None,
d_vector=reference_emb,
style_wav=None,
language_id=language_id,
enable_eos_bos_chars=C.enable_eos_bos_chars,
use_griffin_lim=True,
do_trim_silence=False,
).values()
print("Generated Audio")
IPython.display.display(Audio(wav, rate=ap.sample_rate))
#file_name = text.replace(" ", "_")
#file_name = file_name.translate(str.maketrans('', '', string.punctuation.replace('_', ''))) + '.wav'
file_name="Audio.wav"
out_path = os.path.join(OUT_PATH, file_name)
print(" > Saving output to {}".format(out_path))
ap.save_wav(wav, out_path)
voicefixer.restore(input=out_path, # input wav file path
output="audio1.wav", # output wav file path
# cuda=True, # whether to use gpu acceleration'
cuda = False,
mode = 0) # You can try out mode 0, 1, or 2 to find out the best result
noisy = enhance_model.load_audio(
"audio1.wav"
).unsqueeze(0)
enhanced = enhance_model.enhance_batch(noisy, lengths=torch.tensor([1.]))
torchaudio.save("enhanced.wav", enhanced.cpu(), 16000)
return "enhanced.wav"
gr.Interface(
fn=greet,
inputs=[gr.inputs.Textbox(label='请输入您想要合成的文字,请自觉合法合规使用!'),gr.Audio(type="filepath", source="upload",label='请上传您喜欢的声音(wav/mp3文件, max. 30mb)'),gr.Audio(source="microphone", type="filepath", label = '请用麦克风上传您喜欢的声音,与文件上传二选一即可')],
outputs="audio",
title="🥳💬💕 - Voice Cloning/声音合成测试版(目前只支持英文文本合成,中文版正在开发中,敬请期待)",
description = "注意❗:请不要生成会对个人以及组织造成侵害的内容,此程序仅供科研、学习使用。用户生成内容与程序开发者无关,请自觉合法合规使用,违反者一切后果自负。",
article = "🤖 - 让有人文关怀的AI造福每一个人!AI向善,文明璀璨!TalktoAI - Enable the future!",
).launch()