import torch import torch.nn as nn import math class se_block(nn.Module): def __init__(self, channel, ratio=16): super(se_block, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Linear(channel, channel // ratio, bias=False), nn.ReLU(inplace=True), nn.Linear(channel // ratio, channel, bias=False), nn.Sigmoid() ) def forward(self, x): b, c, _, _ = x.size() y = self.avg_pool(x).view(b, c) y = self.fc(y).view(b, c, 1, 1) return x * y class ChannelAttention(nn.Module): def __init__(self, in_planes, ratio=8): super(ChannelAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.max_pool = nn.AdaptiveMaxPool2d(1) # 利用1x1卷积代替全连接 self.fc1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False) self.relu1 = nn.ReLU() self.fc2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x)))) max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x)))) out = avg_out + max_out return self.sigmoid(out) class SpatialAttention(nn.Module): def __init__(self, kernel_size=7): super(SpatialAttention, self).__init__() assert kernel_size in (3, 7), 'kernel size must be 3 or 7' padding = 3 if kernel_size == 7 else 1 self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = torch.mean(x, dim=1, keepdim=True) max_out, _ = torch.max(x, dim=1, keepdim=True) x = torch.cat([avg_out, max_out], dim=1) x = self.conv1(x) return self.sigmoid(x) class cbam_block(nn.Module): def __init__(self, channel, ratio=8, kernel_size=7): super(cbam_block, self).__init__() self.channelattention = ChannelAttention(channel, ratio=ratio) self.spatialattention = SpatialAttention(kernel_size=kernel_size) def forward(self, x): x = x*self.channelattention(x) x = x*self.spatialattention(x) return x class eca_block(nn.Module): def __init__(self, channel, b=1, gamma=2): super(eca_block, self).__init__() kernel_size = int(abs((math.log(channel, 2) + b) / gamma)) kernel_size = kernel_size if kernel_size % 2 else kernel_size + 1 self.avg_pool = nn.AdaptiveAvgPool2d(1) self.conv = nn.Conv1d(1, 1, kernel_size=kernel_size, padding=(kernel_size - 1) // 2, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): y = self.avg_pool(x) y = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1) y = self.sigmoid(y) return x * y.expand_as(x) class CA_Block(nn.Module): def __init__(self, channel, reduction=16): super(CA_Block, self).__init__() self.conv_1x1 = nn.Conv2d(in_channels=channel, out_channels=channel//reduction, kernel_size=1, stride=1, bias=False) self.relu = nn.ReLU() self.bn = nn.BatchNorm2d(channel//reduction) self.F_h = nn.Conv2d(in_channels=channel//reduction, out_channels=channel, kernel_size=1, stride=1, bias=False) self.F_w = nn.Conv2d(in_channels=channel//reduction, out_channels=channel, kernel_size=1, stride=1, bias=False) self.sigmoid_h = nn.Sigmoid() self.sigmoid_w = nn.Sigmoid() def forward(self, x): _, _, h, w = x.size() x_h = torch.mean(x, dim = 3, keepdim = True).permute(0, 1, 3, 2) x_w = torch.mean(x, dim = 2, keepdim = True) x_cat_conv_relu = self.relu(self.bn(self.conv_1x1(torch.cat((x_h, x_w), 3)))) x_cat_conv_split_h, x_cat_conv_split_w = x_cat_conv_relu.split([h, w], 3) s_h = self.sigmoid_h(self.F_h(x_cat_conv_split_h.permute(0, 1, 3, 2))) s_w = self.sigmoid_w(self.F_w(x_cat_conv_split_w)) out = x * s_h.expand_as(x) * s_w.expand_as(x) return out