Spaces:
Running
Running
import math | |
import torch | |
import torch.nn as nn | |
#-------------------------------------------------# | |
# 卷积块 | |
# Conv2d + BatchNorm2d + LeakyReLU | |
#-------------------------------------------------# | |
class BasicConv(nn.Module): | |
def __init__(self, in_channels, out_channels, kernel_size, stride=1): | |
super(BasicConv, self).__init__() | |
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, kernel_size//2, bias=False) | |
self.bn = nn.BatchNorm2d(out_channels) | |
self.activation = nn.LeakyReLU(0.1) | |
def forward(self, x): | |
x = self.conv(x) | |
x = self.bn(x) | |
x = self.activation(x) | |
return x | |
''' | |
input | |
| | |
BasicConv | |
----------------------- | |
| | | |
route_group route | |
| | | |
BasicConv | | |
| | | |
------------------- | | |
| | | | |
route_1 BasicConv | | |
| | | | |
-----------------cat | | |
| | | |
---- BasicConv | | |
| | | | |
feat cat--------------------- | |
| | |
MaxPooling2D | |
''' | |
#---------------------------------------------------# | |
# CSPdarknet53-tiny的结构块 | |
# 存在一个大残差边 | |
# 这个大残差边绕过了很多的残差结构 | |
#---------------------------------------------------# | |
class Resblock_body(nn.Module): | |
def __init__(self, in_channels, out_channels): | |
super(Resblock_body, self).__init__() | |
self.out_channels = out_channels | |
self.conv1 = BasicConv(in_channels, out_channels, 3) | |
self.conv2 = BasicConv(out_channels//2, out_channels//2, 3) | |
self.conv3 = BasicConv(out_channels//2, out_channels//2, 3) | |
self.conv4 = BasicConv(out_channels, out_channels, 1) | |
self.maxpool = nn.MaxPool2d([2,2],[2,2]) | |
def forward(self, x): | |
# 利用一个3x3卷积进行特征整合 | |
x = self.conv1(x) | |
# 引出一个大的残差边route | |
route = x | |
c = self.out_channels | |
# 对特征层的通道进行分割,取第二部分作为主干部分。 | |
x = torch.split(x, c//2, dim = 1)[1] | |
# 对主干部分进行3x3卷积 | |
x = self.conv2(x) | |
# 引出一个小的残差边route_1 | |
route1 = x | |
# 对第主干部分进行3x3卷积 | |
x = self.conv3(x) | |
# 主干部分与残差部分进行相接 | |
x = torch.cat([x,route1], dim = 1) | |
# 对相接后的结果进行1x1卷积 | |
x = self.conv4(x) | |
feat = x | |
x = torch.cat([route, x], dim = 1) | |
# 利用最大池化进行高和宽的压缩 | |
x = self.maxpool(x) | |
return x,feat | |
class CSPDarkNet(nn.Module): | |
def __init__(self): | |
super(CSPDarkNet, self).__init__() | |
# 首先利用两次步长为2x2的3x3卷积进行高和宽的压缩 | |
# 416,416,3 -> 208,208,32 -> 104,104,64 | |
self.conv1 = BasicConv(3, 32, kernel_size=3, stride=2) | |
self.conv2 = BasicConv(32, 64, kernel_size=3, stride=2) | |
# 104,104,64 -> 52,52,128 | |
self.resblock_body1 = Resblock_body(64, 64) | |
# 52,52,128 -> 26,26,256 | |
self.resblock_body2 = Resblock_body(128, 128) | |
# 26,26,256 -> 13,13,512 | |
self.resblock_body3 = Resblock_body(256, 256) | |
# 13,13,512 -> 13,13,512 | |
self.conv3 = BasicConv(512, 512, kernel_size=3) | |
self.num_features = 1 | |
# 进行权值初始化 | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
m.weight.data.normal_(0, math.sqrt(2. / n)) | |
elif isinstance(m, nn.BatchNorm2d): | |
m.weight.data.fill_(1) | |
m.bias.data.zero_() | |
def forward(self, x): | |
# 416,416,3 -> 208,208,32 -> 104,104,64 | |
x = self.conv1(x) | |
x = self.conv2(x) | |
# 104,104,64 -> 52,52,128 | |
x, _ = self.resblock_body1(x) | |
# 52,52,128 -> 26,26,256 | |
x, _ = self.resblock_body2(x) | |
# 26,26,256 -> x为13,13,512 | |
# -> feat1为26,26,256 | |
x, feat1 = self.resblock_body3(x) | |
# 13,13,512 -> 13,13,512 | |
x = self.conv3(x) | |
feat2 = x | |
return feat1,feat2 | |
def darknet53_tiny(pretrained, **kwargs): | |
model = CSPDarkNet() | |
if pretrained: | |
model.load_state_dict(torch.load("model_data/CSPdarknet53_tiny_backbone_weights.pth")) | |
return model | |