YoloGesture / nets /CSPdarknet53_tiny.py
Kedreamix's picture
YoloGesture推理主要代码
4a3ab35
raw
history blame
4.89 kB
import math
import torch
import torch.nn as nn
#-------------------------------------------------#
# 卷积块
# Conv2d + BatchNorm2d + LeakyReLU
#-------------------------------------------------#
class BasicConv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1):
super(BasicConv, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, kernel_size//2, bias=False)
self.bn = nn.BatchNorm2d(out_channels)
self.activation = nn.LeakyReLU(0.1)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.activation(x)
return x
'''
input
|
BasicConv
-----------------------
| |
route_group route
| |
BasicConv |
| |
------------------- |
| | |
route_1 BasicConv |
| | |
-----------------cat |
| |
---- BasicConv |
| | |
feat cat---------------------
|
MaxPooling2D
'''
#---------------------------------------------------#
# CSPdarknet53-tiny的结构块
# 存在一个大残差边
# 这个大残差边绕过了很多的残差结构
#---------------------------------------------------#
class Resblock_body(nn.Module):
def __init__(self, in_channels, out_channels):
super(Resblock_body, self).__init__()
self.out_channels = out_channels
self.conv1 = BasicConv(in_channels, out_channels, 3)
self.conv2 = BasicConv(out_channels//2, out_channels//2, 3)
self.conv3 = BasicConv(out_channels//2, out_channels//2, 3)
self.conv4 = BasicConv(out_channels, out_channels, 1)
self.maxpool = nn.MaxPool2d([2,2],[2,2])
def forward(self, x):
# 利用一个3x3卷积进行特征整合
x = self.conv1(x)
# 引出一个大的残差边route
route = x
c = self.out_channels
# 对特征层的通道进行分割,取第二部分作为主干部分。
x = torch.split(x, c//2, dim = 1)[1]
# 对主干部分进行3x3卷积
x = self.conv2(x)
# 引出一个小的残差边route_1
route1 = x
# 对第主干部分进行3x3卷积
x = self.conv3(x)
# 主干部分与残差部分进行相接
x = torch.cat([x,route1], dim = 1)
# 对相接后的结果进行1x1卷积
x = self.conv4(x)
feat = x
x = torch.cat([route, x], dim = 1)
# 利用最大池化进行高和宽的压缩
x = self.maxpool(x)
return x,feat
class CSPDarkNet(nn.Module):
def __init__(self):
super(CSPDarkNet, self).__init__()
# 首先利用两次步长为2x2的3x3卷积进行高和宽的压缩
# 416,416,3 -> 208,208,32 -> 104,104,64
self.conv1 = BasicConv(3, 32, kernel_size=3, stride=2)
self.conv2 = BasicConv(32, 64, kernel_size=3, stride=2)
# 104,104,64 -> 52,52,128
self.resblock_body1 = Resblock_body(64, 64)
# 52,52,128 -> 26,26,256
self.resblock_body2 = Resblock_body(128, 128)
# 26,26,256 -> 13,13,512
self.resblock_body3 = Resblock_body(256, 256)
# 13,13,512 -> 13,13,512
self.conv3 = BasicConv(512, 512, kernel_size=3)
self.num_features = 1
# 进行权值初始化
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def forward(self, x):
# 416,416,3 -> 208,208,32 -> 104,104,64
x = self.conv1(x)
x = self.conv2(x)
# 104,104,64 -> 52,52,128
x, _ = self.resblock_body1(x)
# 52,52,128 -> 26,26,256
x, _ = self.resblock_body2(x)
# 26,26,256 -> x为13,13,512
# -> feat1为26,26,256
x, feat1 = self.resblock_body3(x)
# 13,13,512 -> 13,13,512
x = self.conv3(x)
feat2 = x
return feat1,feat2
def darknet53_tiny(pretrained, **kwargs):
model = CSPDarkNet()
if pretrained:
model.load_state_dict(torch.load("model_data/CSPdarknet53_tiny_backbone_weights.pth"))
return model