File size: 6,944 Bytes
4a3ab35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
from collections import OrderedDict

import torch
import torch.nn as nn

from nets.CSPdarknet import darknet53


def conv2d(filter_in, filter_out, kernel_size, stride=1):
    pad = (kernel_size - 1) // 2 if kernel_size else 0
    return nn.Sequential(OrderedDict([
        ("conv", nn.Conv2d(filter_in, filter_out, kernel_size=kernel_size, stride=stride, padding=pad, bias=False)),
        ("bn", nn.BatchNorm2d(filter_out)),
        ("relu", nn.LeakyReLU(0.1)),
    ]))

#---------------------------------------------------#
#   SPP结构,利用不同大小的池化核进行池化
#   池化后堆叠
#---------------------------------------------------#
class SpatialPyramidPooling(nn.Module):
    def __init__(self, pool_sizes=[5, 9, 13]):
        super(SpatialPyramidPooling, self).__init__()

        self.maxpools = nn.ModuleList([nn.MaxPool2d(pool_size, 1, pool_size//2) for pool_size in pool_sizes])

    def forward(self, x):
        features = [maxpool(x) for maxpool in self.maxpools[::-1]]
        features = torch.cat(features + [x], dim=1)

        return features

#---------------------------------------------------#
#   卷积 + 上采样
#---------------------------------------------------#
class Upsample(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(Upsample, self).__init__()

        self.upsample = nn.Sequential(
            conv2d(in_channels, out_channels, 1),
            nn.Upsample(scale_factor=2, mode='nearest')
        )

    def forward(self, x,):
        x = self.upsample(x)
        return x

#---------------------------------------------------#
#   三次卷积块
#---------------------------------------------------#
def make_three_conv(filters_list, in_filters):
    m = nn.Sequential(
        conv2d(in_filters, filters_list[0], 1),
        conv2d(filters_list[0], filters_list[1], 3),
        conv2d(filters_list[1], filters_list[0], 1),
    )
    return m

#---------------------------------------------------#
#   五次卷积块
#---------------------------------------------------#
def make_five_conv(filters_list, in_filters):
    m = nn.Sequential(
        conv2d(in_filters, filters_list[0], 1),
        conv2d(filters_list[0], filters_list[1], 3),
        conv2d(filters_list[1], filters_list[0], 1),
        conv2d(filters_list[0], filters_list[1], 3),
        conv2d(filters_list[1], filters_list[0], 1),
    )
    return m

#---------------------------------------------------#
#   最后获得yolov4的输出
#---------------------------------------------------#
def yolo_head(filters_list, in_filters):
    m = nn.Sequential(
        conv2d(in_filters, filters_list[0], 3),
        nn.Conv2d(filters_list[0], filters_list[1], 1),
    )
    return m

#---------------------------------------------------#
#   yolo_body
#---------------------------------------------------#
class YoloBody(nn.Module):
    def __init__(self, anchors_mask, num_classes, pretrained = False):
        super(YoloBody, self).__init__()
        #---------------------------------------------------#   
        #   生成CSPdarknet53的主干模型
        #   获得三个有效特征层,他们的shape分别是:
        #   52,52,256
        #   26,26,512
        #   13,13,1024
        #---------------------------------------------------#
        self.backbone   = darknet53(pretrained)

        self.conv1      = make_three_conv([512,1024],1024)
        self.SPP        = SpatialPyramidPooling()
        self.conv2      = make_three_conv([512,1024],2048)

        self.upsample1          = Upsample(512,256)
        self.conv_for_P4        = conv2d(512,256,1)
        self.make_five_conv1    = make_five_conv([256, 512],512)

        self.upsample2          = Upsample(256,128)
        self.conv_for_P3        = conv2d(256,128,1)
        self.make_five_conv2    = make_five_conv([128, 256],256)

        # 3*(5+num_classes) = 3*(5+20) = 3*(4+1+20)=75
        self.yolo_head3         = yolo_head([256, len(anchors_mask[0]) * (5 + num_classes)],128)

        self.down_sample1       = conv2d(128,256,3,stride=2)
        self.make_five_conv3    = make_five_conv([256, 512],512)

        # 3*(5+num_classes) = 3*(5+20) = 3*(4+1+20)=75
        self.yolo_head2         = yolo_head([512, len(anchors_mask[1]) * (5 + num_classes)],256)

        self.down_sample2       = conv2d(256,512,3,stride=2)
        self.make_five_conv4    = make_five_conv([512, 1024],1024)

        # 3*(5+num_classes)=3*(5+20)=3*(4+1+20)=75
        self.yolo_head1         = yolo_head([1024, len(anchors_mask[2]) * (5 + num_classes)],512)


    def forward(self, x):
        #  backbone
        x2, x1, x0 = self.backbone(x)

        # 13,13,1024 -> 13,13,512 -> 13,13,1024 -> 13,13,512 -> 13,13,2048 
        P5 = self.conv1(x0)
        P5 = self.SPP(P5)
        # 13,13,2048 -> 13,13,512 -> 13,13,1024 -> 13,13,512
        P5 = self.conv2(P5)

        # 13,13,512 -> 13,13,256 -> 26,26,256
        P5_upsample = self.upsample1(P5)
        # 26,26,512 -> 26,26,256
        P4 = self.conv_for_P4(x1)
        # 26,26,256 + 26,26,256 -> 26,26,512
        P4 = torch.cat([P4,P5_upsample],axis=1)
        # 26,26,512 -> 26,26,256 -> 26,26,512 -> 26,26,256 -> 26,26,512 -> 26,26,256
        P4 = self.make_five_conv1(P4)

        # 26,26,256 -> 26,26,128 -> 52,52,128
        P4_upsample = self.upsample2(P4)
        # 52,52,256 -> 52,52,128
        P3 = self.conv_for_P3(x2)
        # 52,52,128 + 52,52,128 -> 52,52,256
        P3 = torch.cat([P3,P4_upsample],axis=1)
        # 52,52,256 -> 52,52,128 -> 52,52,256 -> 52,52,128 -> 52,52,256 -> 52,52,128
        P3 = self.make_five_conv2(P3)

        # 52,52,128 -> 26,26,256
        P3_downsample = self.down_sample1(P3)
        # 26,26,256 + 26,26,256 -> 26,26,512
        P4 = torch.cat([P3_downsample,P4],axis=1)
        # 26,26,512 -> 26,26,256 -> 26,26,512 -> 26,26,256 -> 26,26,512 -> 26,26,256
        P4 = self.make_five_conv3(P4)

        # 26,26,256 -> 13,13,512
        P4_downsample = self.down_sample2(P4)
        # 13,13,512 + 13,13,512 -> 13,13,1024
        P5 = torch.cat([P4_downsample,P5],axis=1)
        # 13,13,1024 -> 13,13,512 -> 13,13,1024 -> 13,13,512 -> 13,13,1024 -> 13,13,512
        P5 = self.make_five_conv4(P5)

        #---------------------------------------------------#
        #   第三个特征层
        #   y3=(batch_size,75,52,52)
        #---------------------------------------------------#
        out2 = self.yolo_head3(P3)
        #---------------------------------------------------#
        #   第二个特征层
        #   y2=(batch_size,75,26,26)
        #---------------------------------------------------#
        out1 = self.yolo_head2(P4)
        #---------------------------------------------------#
        #   第一个特征层
        #   y1=(batch_size,75,13,13)
        #---------------------------------------------------#
        out0 = self.yolo_head1(P5)

        return out0, out1, out2