Spaces:
Running
Running
File size: 15,305 Bytes
4350164 aac89e0 4350164 4826dc2 4350164 4826dc2 4350164 4826dc2 4350164 4826dc2 4350164 4826dc2 4350164 4826dc2 4350164 4826dc2 4350164 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
"""Create an Object Detection Web App using PyTorch and Streamlit."""
# import libraries
from PIL import Image
from torchvision import models, transforms
import torch
import streamlit as st
from yolo import YOLO
import os
import urllib
import numpy as np
from streamlit_webrtc import webrtc_streamer, WebRtcMode, RTCConfiguration
import av
# 设置网页的icon
st.set_page_config(page_title='Gesture Detector', page_icon='✌',
layout='centered', initial_sidebar_state='expanded')
RTC_CONFIGURATION = RTCConfiguration(
{
"RTCIceServer": [{
"urls": ["stun:stun.l.google.com:19302"],
"username": "pikachu",
"credential": "1234",
}]
}
)
def main():
# Render the readme as markdown using st.markdown.
readme_text = st.markdown(open("instructions.md",encoding='utf-8').read())
# Once we have the dependencies, add a selector for the app mode on the sidebar.
st.sidebar.title("What to do")
app_mode = st.sidebar.selectbox("Choose the app mode",
["Show instructions", "Run the app", "Show the source code"])
if app_mode == "Show instructions":
st.sidebar.success('To continue select "Run the app".')
elif app_mode == "Show the source code":
readme_text.empty()
st.code(open("app.py",encoding='utf-8').read())
elif app_mode == "Run the app":
# Download external dependencies.
for filename in EXTERNAL_DEPENDENCIES.keys():
download_file(filename)
readme_text.empty()
run_the_app()
# External files to download.
EXTERNAL_DEPENDENCIES = {
"yolov4_tiny.pth": {
"url": "https://github.com/Kedreamix/YoloGesture/releases/download/v1.0/yolov4_tiny.pth",
"size": 23631189
},
"yolov4_SE.pth": {
"url": "https://github.com/Kedreamix/YoloGesture/releases/download/v1.0/yolov4_SE.pth",
"size": 23806027
},
"yolov4_CBAM.pth":{
"url": "https://github.com/Kedreamix/YoloGesture/releases/download/v1.0/yolov4_CBAM.pth",
"size": 23981478
},
"yolov4_ECA.pth":{
"url": "https://github.com/Kedreamix/YoloGesture/releases/download/v1.0/yolov4_ECA.pth",
"size": 23632688
},
"yolov4_weights_ep150_608.pth":{
"url": "https://github.com/Kedreamix/YoloGesture/releases/download/v1.0/yolov4_weights_ep150_608.pth",
"size": 256423031
},
"yolov4_weights_ep150_416.pth":{
"url": "https://github.com/Kedreamix/YoloGesture/releases/download/v1.0/yolov4_weights_ep150_416.pth",
"size": 256423031
},
}
# This file downloader demonstrates Streamlit animation.
def download_file(file_path):
# Don't download the file twice. (If possible, verify the download using the file length.)
if os.path.exists(file_path):
if "size" not in EXTERNAL_DEPENDENCIES[file_path]:
return
elif os.path.getsize(file_path) == EXTERNAL_DEPENDENCIES[file_path]["size"]:
return
# print(os.path.getsize(file_path))
# These are handles to two visual elements to animate.
weights_warning, progress_bar = None, None
try:
weights_warning = st.warning("Downloading %s..." % file_path)
progress_bar = st.progress(0)
with open(file_path, "wb") as output_file:
with urllib.request.urlopen(EXTERNAL_DEPENDENCIES[file_path]["url"]) as response:
length = int(response.info()["Content-Length"])
counter = 0.0
MEGABYTES = 2.0 ** 20.0
while True:
data = response.read(8192)
if not data:
break
counter += len(data)
output_file.write(data)
# We perform animation by overwriting the elements.
weights_warning.warning("Downloading %s... (%6.2f/%6.2f MB)" %
(file_path, counter / MEGABYTES, length / MEGABYTES))
progress_bar.progress(min(counter / length, 1.0))
except Exception as e:
print(e)
# Finally, we remove these visual elements by calling .empty().
finally:
if weights_warning is not None:
weights_warning.empty()
if progress_bar is not None:
progress_bar.empty()
# This is the main app app itself, which appears when the user selects "Run the app".
def run_the_app():
class Config():
def __init__(self, weights = 'yolov4_tiny.pth', tiny = True, phi = 0, shape = 416,nms_iou = 0.3, confidence = 0.5):
self.weights = weights
self.tiny = tiny
self.phi = phi
self.cuda = False
self.shape = shape
self.confidence = confidence
self.nms_iou = nms_iou
# set title of app
st.markdown('<h1 align="center">✌ Gesture Detection</h1>',
unsafe_allow_html=True)
st.sidebar.markdown("# Gesture Detection on?")
activities = ["Example","Image", "Camera", "FPS", "Heatmap","Real Time", "Video"]
choice = st.sidebar.selectbox("Choose among the given options:", activities)
phi = st.sidebar.selectbox("yolov4-tiny 使用的自注意力模式:",('0tiny','1SE','2CABM','3ECA'))
print("")
tiny = st.sidebar.checkbox('是否使用 yolov4 tiny 模型')
if not tiny:
shape = st.sidebar.selectbox("Choose shape to Input:", [416,608])
conf,nms = object_detector_ui()
@st.cache_data
def get_yolo(tiny,phi,conf,nms,shape=416):
weights = 'yolov4_tiny.pth'
if tiny:
if phi == '0tiny':
weights = 'yolov4_tiny.pth'
elif phi == '1SE':
weights = 'yolov4_SE.pth'
elif phi == '2CABM':
weights = 'yolov4_CBAM.pth'
elif phi == '3ECA':
weights = 'yolov4_ECA.pth'
else:
if shape == 608:
weights = 'yolov4_weights_ep150_608.pth'
elif shape == 416:
weights = 'yolov4_weights_ep150_416.pth'
opt = Config(weights = weights, tiny = tiny , phi = int(phi[0]), shape = shape,nms_iou = nms, confidence = conf)
yolo = YOLO(opt)
return yolo
if tiny:
yolo = get_yolo(tiny, phi, conf, nms)
st.write("YOLOV4 tiny 模型加载完毕")
else:
yolo = get_yolo(tiny, phi, conf, nms, shape)
st.write("YOLOV4 模型加载完毕")
if choice == 'Image':
detect_image(yolo)
elif choice =='Camera':
detect_camera(yolo)
elif choice == 'FPS':
detect_fps(yolo)
elif choice == "Heatmap":
detect_heatmap(yolo)
elif choice == "Example":
detect_example(yolo)
elif choice == "Real Time":
detect_realtime(yolo)
elif choice == "Video":
detect_video(yolo)
# This sidebar UI lets the user select parameters for the YOLO object detector.
def object_detector_ui():
st.sidebar.markdown("# Model")
confidence_threshold = st.sidebar.slider("Confidence threshold", 0.0, 1.0, 0.5, 0.01)
overlap_threshold = st.sidebar.slider("Overlap threshold", 0.0, 1.0, 0.3, 0.01)
return confidence_threshold, overlap_threshold
def predict(image,yolo):
"""Return predictions.
Parameters
----------
:param image: uploaded image
:type image: jpg
:rtype: list
:return: none
"""
crop = False
count = False
try:
# image = Image.open(image)
r_image = yolo.detect_image(image, crop = crop, count=count)
transform = transforms.Compose([transforms.ToTensor()])
result = transform(r_image)
st.image(result.permute(1,2,0).numpy(), caption = 'Processed Image.', use_column_width = True)
except Exception as e:
print(e)
def fps(image,yolo):
test_interval = 50
tact_time = yolo.get_FPS(image, test_interval)
st.write(str(tact_time) + ' seconds, ', str(1/tact_time),'FPS, @batch_size 1')
return tact_time
# print(str(tact_time) + ' seconds, ' + str(1/tact_time) + 'FPS, @batch_size 1')
def detect_image(yolo):
# enable users to upload images for the model to make predictions
file_up = st.file_uploader("Upload an image", type = ["jpg","png","jpeg"])
classes = ["up","down","left","right","front","back","clockwise","anticlockwise"]
class_to_idx = {cls: idx for (idx, cls) in enumerate(classes)}
st.sidebar.markdown("See the model preformance and play with it")
if file_up is not None:
with st.spinner(text='Preparing Image'):
# display image that user uploaded
image = Image.open(file_up)
st.image(image, caption = 'Uploaded Image.', use_column_width = True)
st.balloons()
detect = st.button("开始检测Image")
if detect:
st.write("")
st.write("Just a second ...")
predict(image,yolo)
st.balloons()
def detect_camera(yolo):
picture = st.camera_input("Take a picture")
if picture:
filters_to_funcs = {
"No filter": predict,
"Heatmap": heatmap,
"FPS": fps,
}
filters = st.selectbox("...and now, apply a filter!", filters_to_funcs.keys())
image = Image.open(picture)
with st.spinner(text='Preparing Image'):
filters_to_funcs[filters](image,yolo)
st.balloons()
def detect_fps(yolo):
file_up = st.file_uploader("Upload an image", type = ["jpg","png","jpeg"])
classes = ["up","down","left","right","front","back","clockwise","anticlockwise"]
class_to_idx = {cls: idx for (idx, cls) in enumerate(classes)}
st.sidebar.markdown("See the model preformance and play with it")
if file_up is not None:
# display image that user uploaded
image = Image.open(file_up)
st.image(image, caption = 'Uploaded Image.', use_column_width = True)
st.balloons()
detect = st.button("开始检测 FPS")
if detect:
with st.spinner(text='Preparing Image'):
st.write("")
st.write("Just a second ...")
tact_time = fps(image,yolo)
# st.write(str(tact_time) + ' seconds, ', str(1/tact_time),'FPS, @batch_size 1')
st.balloons()
def heatmap(image,yolo):
heatmap_save_path = "heatmap_vision.png"
yolo.detect_heatmap(image, heatmap_save_path)
img = Image.open(heatmap_save_path)
transform = transforms.Compose([transforms.ToTensor()])
result = transform(img)
st.image(result.permute(1,2,0).numpy(), caption = 'Processed Image.', use_column_width = True)
def detect_heatmap(yolo):
file_up = st.file_uploader("Upload an image", type = ["jpg","png","jpeg"])
classes = ["up","down","left","right","front","back","clockwise","anticlockwise"]
class_to_idx = {cls: idx for (idx, cls) in enumerate(classes)}
st.sidebar.markdown("See the model preformance and play with it")
if file_up is not None:
# display image that user uploaded
image = Image.open(file_up)
st.image(image, caption = 'Uploaded Image.', use_column_width = True)
st.balloons()
detect = st.button("开始检测 heatmap")
if detect:
with st.spinner(text='Preparing Heatmap'):
st.write("")
st.write("Just a second ...")
heatmap(image,yolo)
st.balloons()
def detect_example(yolo):
st.sidebar.title("Choose an Image as a example")
images = os.listdir('./img')
images.sort()
image = st.sidebar.selectbox("Image Name", images)
st.sidebar.markdown("See the model preformance and play with it")
image = Image.open(os.path.join('img',image))
st.image(image, caption = 'Choose Image.', use_column_width = True)
st.balloons()
detect = st.button("开始检测Image")
if detect:
st.write("")
st.write("Just a second ...")
predict(image,yolo)
st.balloons()
def detect_realtime(yolo):
class VideoProcessor:
def recv(self, frame):
img = frame.to_ndarray(format="bgr24")
img = Image.fromarray(img)
crop = False
count = False
r_image = yolo.detect_image(img, crop = crop, count=count)
transform = transforms.Compose([transforms.ToTensor()])
result = transform(r_image)
result = result.permute(1,2,0).numpy()
result = (result * 255).astype(np.uint8)
return av.VideoFrame.from_ndarray(result, format="bgr24")
webrtc_ctx = webrtc_streamer(
key="example",
mode=WebRtcMode.SENDRECV,
rtc_configuration=RTC_CONFIGURATION,
media_stream_constraints={"video": True, "audio": False},
async_processing=False,
video_processor_factory=VideoProcessor
)
import cv2
import time
def detect_video(yolo):
file_up = st.file_uploader("Upload a video", type = ["mp4"])
print(file_up)
classes = ["up","down","left","right","front","back","clockwise","anticlockwise"]
if file_up is not None:
video_path = 'video.mp4'
st.video(file_up)
with open(video_path, 'wb') as f:
f.write(file_up.read())
detect = st.button("开始检测 Video")
if detect:
video_save_path = 'video2.mp4'
# display image that user uploaded
capture = cv2.VideoCapture(video_path)
video_fps = st.slider("Video FPS", 5, 30, int(capture.get(cv2.CAP_PROP_FPS)), 1)
fourcc = cv2.VideoWriter_fourcc(*'XVID')
size = (int(capture.get(cv2.CAP_PROP_FRAME_WIDTH)), int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)))
out = cv2.VideoWriter(video_save_path, fourcc, video_fps, size)
while(True):
# 读取某一帧
ref, frame = capture.read()
if not ref:
break
# 转变成Image
# frame = Image.fromarray(np.uint8(frame))
# 格式转变,BGRtoRGB
frame = cv2.cvtColor(frame,cv2.COLOR_BGR2RGB)
# 转变成Image
frame = Image.fromarray(np.uint8(frame))
# 进行检测
frame = np.array(yolo.detect_image(frame))
# RGBtoBGR满足opencv显示格式
frame = cv2.cvtColor(frame,cv2.COLOR_RGB2BGR)
# print("fps= %.2f"%(fps))
# frame = cv2.putText(frame, "fps= %.2f"%(fps), (0, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
out.write(frame)
out.release()
capture.release()
print("Save processed video to the path :" + video_save_path)
with open(video_save_path, "rb") as file:
btn = st.download_button(
label="Download Video",
data=file,
file_name="video.mp4",
)
st.balloons()
if __name__ == "__main__":
main() |