File size: 4,890 Bytes
4a3ab35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import math

import torch
import torch.nn as nn


#-------------------------------------------------#
#   卷积块
#   Conv2d + BatchNorm2d + LeakyReLU
#-------------------------------------------------#
class BasicConv(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, stride=1):
        super(BasicConv, self).__init__()

        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, kernel_size//2, bias=False)
        self.bn = nn.BatchNorm2d(out_channels)
        self.activation = nn.LeakyReLU(0.1)

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        x = self.activation(x)
        return x

         
'''
                    input
                      |
                  BasicConv
                      -----------------------
                      |                     |
                 route_group              route
                      |                     |
                  BasicConv                 |
                      |                     |
    -------------------                     |
    |                 |                     |
 route_1          BasicConv                 |
    |                 |                     |
    -----------------cat                    |
                      |                     |
        ----      BasicConv                 |
        |             |                     |
      feat           cat---------------------
                      |
                 MaxPooling2D
'''
#---------------------------------------------------#
#   CSPdarknet53-tiny的结构块
#   存在一个大残差边
#   这个大残差边绕过了很多的残差结构
#---------------------------------------------------#
class Resblock_body(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(Resblock_body, self).__init__()
        self.out_channels = out_channels

        self.conv1 = BasicConv(in_channels, out_channels, 3)

        self.conv2 = BasicConv(out_channels//2, out_channels//2, 3)
        self.conv3 = BasicConv(out_channels//2, out_channels//2, 3)

        self.conv4 = BasicConv(out_channels, out_channels, 1)
        self.maxpool = nn.MaxPool2d([2,2],[2,2])

    def forward(self, x):
        # 利用一个3x3卷积进行特征整合
        x = self.conv1(x)
        # 引出一个大的残差边route
        route = x
        
        c = self.out_channels
        # 对特征层的通道进行分割,取第二部分作为主干部分。
        x = torch.split(x, c//2, dim = 1)[1]
        # 对主干部分进行3x3卷积
        x = self.conv2(x)
        # 引出一个小的残差边route_1
        route1 = x
        # 对第主干部分进行3x3卷积
        x = self.conv3(x)
        # 主干部分与残差部分进行相接
        x = torch.cat([x,route1], dim = 1) 

        # 对相接后的结果进行1x1卷积
        x = self.conv4(x)
        feat = x
        x = torch.cat([route, x], dim = 1)
        
        # 利用最大池化进行高和宽的压缩
        x = self.maxpool(x)
        return x,feat

class CSPDarkNet(nn.Module):
    def __init__(self):
        super(CSPDarkNet, self).__init__()
        # 首先利用两次步长为2x2的3x3卷积进行高和宽的压缩
        # 416,416,3 -> 208,208,32 -> 104,104,64
        self.conv1 = BasicConv(3, 32, kernel_size=3, stride=2)
        self.conv2 = BasicConv(32, 64, kernel_size=3, stride=2)

        # 104,104,64 -> 52,52,128
        self.resblock_body1 =  Resblock_body(64, 64)
        # 52,52,128 -> 26,26,256
        self.resblock_body2 =  Resblock_body(128, 128)
        # 26,26,256 -> 13,13,512
        self.resblock_body3 =  Resblock_body(256, 256)
        # 13,13,512 -> 13,13,512
        self.conv3 = BasicConv(512, 512, kernel_size=3)

        self.num_features = 1
        # 进行权值初始化
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()


    def forward(self, x):
        # 416,416,3 -> 208,208,32 -> 104,104,64
        x = self.conv1(x)
        x = self.conv2(x)

        # 104,104,64 -> 52,52,128
        x, _    = self.resblock_body1(x)
        # 52,52,128 -> 26,26,256
        x, _    = self.resblock_body2(x)
        # 26,26,256 -> x为13,13,512
        #           -> feat1为26,26,256
        x, feat1    = self.resblock_body3(x)

        # 13,13,512 -> 13,13,512
        x = self.conv3(x)
        feat2 = x
        return feat1,feat2

def darknet53_tiny(pretrained, **kwargs):
    model = CSPDarkNet()
    if pretrained:
        model.load_state_dict(torch.load("model_data/CSPdarknet53_tiny_backbone_weights.pth"))
    return model