Spaces:
Running
Running
File size: 36,082 Bytes
4a3ab35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 |
import glob
import json
import math
import operator
import os
import shutil
import sys
import cv2
import matplotlib.pyplot as plt
import numpy as np
'''
0,0 ------> x (width)
|
| (Left,Top)
| *_________
| | |
| |
y |_________|
(height) *
(Right,Bottom)
'''
def log_average_miss_rate(precision, fp_cumsum, num_images):
"""
log-average miss rate:
Calculated by averaging miss rates at 9 evenly spaced FPPI points
between 10e-2 and 10e0, in log-space.
output:
lamr | log-average miss rate
mr | miss rate
fppi | false positives per image
references:
[1] Dollar, Piotr, et al. "Pedestrian Detection: An Evaluation of the
State of the Art." Pattern Analysis and Machine Intelligence, IEEE
Transactions on 34.4 (2012): 743 - 761.
"""
if precision.size == 0:
lamr = 0
mr = 1
fppi = 0
return lamr, mr, fppi
fppi = fp_cumsum / float(num_images)
mr = (1 - precision)
fppi_tmp = np.insert(fppi, 0, -1.0)
mr_tmp = np.insert(mr, 0, 1.0)
ref = np.logspace(-2.0, 0.0, num = 9)
for i, ref_i in enumerate(ref):
j = np.where(fppi_tmp <= ref_i)[-1][-1]
ref[i] = mr_tmp[j]
lamr = math.exp(np.mean(np.log(np.maximum(1e-10, ref))))
return lamr, mr, fppi
"""
throw error and exit
"""
def error(msg):
print(msg)
sys.exit(0)
"""
check if the number is a float between 0.0 and 1.0
"""
def is_float_between_0_and_1(value):
try:
val = float(value)
if val > 0.0 and val < 1.0:
return True
else:
return False
except ValueError:
return False
"""
Calculate the AP given the recall and precision array
1st) We compute a version of the measured precision/recall curve with
precision monotonically decreasing
2nd) We compute the AP as the area under this curve by numerical integration.
"""
def voc_ap(rec, prec):
"""
--- Official matlab code VOC2012---
mrec=[0 ; rec ; 1];
mpre=[0 ; prec ; 0];
for i=numel(mpre)-1:-1:1
mpre(i)=max(mpre(i),mpre(i+1));
end
i=find(mrec(2:end)~=mrec(1:end-1))+1;
ap=sum((mrec(i)-mrec(i-1)).*mpre(i));
"""
rec.insert(0, 0.0) # insert 0.0 at begining of list
rec.append(1.0) # insert 1.0 at end of list
mrec = rec[:]
prec.insert(0, 0.0) # insert 0.0 at begining of list
prec.append(0.0) # insert 0.0 at end of list
mpre = prec[:]
"""
This part makes the precision monotonically decreasing
(goes from the end to the beginning)
matlab: for i=numel(mpre)-1:-1:1
mpre(i)=max(mpre(i),mpre(i+1));
"""
for i in range(len(mpre)-2, -1, -1):
mpre[i] = max(mpre[i], mpre[i+1])
"""
This part creates a list of indexes where the recall changes
matlab: i=find(mrec(2:end)~=mrec(1:end-1))+1;
"""
i_list = []
for i in range(1, len(mrec)):
if mrec[i] != mrec[i-1]:
i_list.append(i) # if it was matlab would be i + 1
"""
The Average Precision (AP) is the area under the curve
(numerical integration)
matlab: ap=sum((mrec(i)-mrec(i-1)).*mpre(i));
"""
ap = 0.0
for i in i_list:
ap += ((mrec[i]-mrec[i-1])*mpre[i])
return ap, mrec, mpre
"""
Convert the lines of a file to a list
"""
def file_lines_to_list(path):
# open txt file lines to a list
with open(path) as f:
content = f.readlines()
# remove whitespace characters like `\n` at the end of each line
content = [x.strip() for x in content]
return content
"""
Draws text in image
"""
def draw_text_in_image(img, text, pos, color, line_width):
font = cv2.FONT_HERSHEY_PLAIN
fontScale = 1
lineType = 1
bottomLeftCornerOfText = pos
cv2.putText(img, text,
bottomLeftCornerOfText,
font,
fontScale,
color,
lineType)
text_width, _ = cv2.getTextSize(text, font, fontScale, lineType)[0]
return img, (line_width + text_width)
"""
Plot - adjust axes
"""
def adjust_axes(r, t, fig, axes):
# get text width for re-scaling
bb = t.get_window_extent(renderer=r)
text_width_inches = bb.width / fig.dpi
# get axis width in inches
current_fig_width = fig.get_figwidth()
new_fig_width = current_fig_width + text_width_inches
propotion = new_fig_width / current_fig_width
# get axis limit
x_lim = axes.get_xlim()
axes.set_xlim([x_lim[0], x_lim[1]*propotion])
"""
Draw plot using Matplotlib
"""
def draw_plot_func(dictionary, n_classes, window_title, plot_title, x_label, output_path, to_show, plot_color, true_p_bar):
# sort the dictionary by decreasing value, into a list of tuples
sorted_dic_by_value = sorted(dictionary.items(), key=operator.itemgetter(1))
# unpacking the list of tuples into two lists
sorted_keys, sorted_values = zip(*sorted_dic_by_value)
#
if true_p_bar != "":
"""
Special case to draw in:
- green -> TP: True Positives (object detected and matches ground-truth)
- red -> FP: False Positives (object detected but does not match ground-truth)
- orange -> FN: False Negatives (object not detected but present in the ground-truth)
"""
fp_sorted = []
tp_sorted = []
for key in sorted_keys:
fp_sorted.append(dictionary[key] - true_p_bar[key])
tp_sorted.append(true_p_bar[key])
plt.barh(range(n_classes), fp_sorted, align='center', color='crimson', label='False Positive')
plt.barh(range(n_classes), tp_sorted, align='center', color='forestgreen', label='True Positive', left=fp_sorted)
# add legend
plt.legend(loc='lower right')
"""
Write number on side of bar
"""
fig = plt.gcf() # gcf - get current figure
axes = plt.gca()
r = fig.canvas.get_renderer()
for i, val in enumerate(sorted_values):
fp_val = fp_sorted[i]
tp_val = tp_sorted[i]
fp_str_val = " " + str(fp_val)
tp_str_val = fp_str_val + " " + str(tp_val)
# trick to paint multicolor with offset:
# first paint everything and then repaint the first number
t = plt.text(val, i, tp_str_val, color='forestgreen', va='center', fontweight='bold')
plt.text(val, i, fp_str_val, color='crimson', va='center', fontweight='bold')
if i == (len(sorted_values)-1): # largest bar
adjust_axes(r, t, fig, axes)
else:
plt.barh(range(n_classes), sorted_values, color=plot_color)
"""
Write number on side of bar
"""
fig = plt.gcf() # gcf - get current figure
axes = plt.gca()
r = fig.canvas.get_renderer()
for i, val in enumerate(sorted_values):
str_val = " " + str(val) # add a space before
if val < 1.0:
str_val = " {0:.2f}".format(val)
t = plt.text(val, i, str_val, color=plot_color, va='center', fontweight='bold')
# re-set axes to show number inside the figure
if i == (len(sorted_values)-1): # largest bar
adjust_axes(r, t, fig, axes)
# set window title
fig.canvas.set_window_title(window_title)
# write classes in y axis
tick_font_size = 12
plt.yticks(range(n_classes), sorted_keys, fontsize=tick_font_size)
"""
Re-scale height accordingly
"""
init_height = fig.get_figheight()
# comput the matrix height in points and inches
dpi = fig.dpi
height_pt = n_classes * (tick_font_size * 1.4) # 1.4 (some spacing)
height_in = height_pt / dpi
# compute the required figure height
top_margin = 0.15 # in percentage of the figure height
bottom_margin = 0.05 # in percentage of the figure height
figure_height = height_in / (1 - top_margin - bottom_margin)
# set new height
if figure_height > init_height:
fig.set_figheight(figure_height)
# set plot title
plt.title(plot_title, fontsize=14)
# set axis titles
# plt.xlabel('classes')
plt.xlabel(x_label, fontsize='large')
# adjust size of window
fig.tight_layout()
# save the plot
fig.savefig(output_path)
# show image
if to_show:
plt.show()
# close the plot
plt.close()
def get_map(MINOVERLAP, draw_plot, path = './map_out'):
GT_PATH = os.path.join(path, 'ground-truth')
DR_PATH = os.path.join(path, 'detection-results')
IMG_PATH = os.path.join(path, 'images-optional')
TEMP_FILES_PATH = os.path.join(path, '.temp_files')
RESULTS_FILES_PATH = os.path.join(path, 'results')
show_animation = True
if os.path.exists(IMG_PATH):
for dirpath, dirnames, files in os.walk(IMG_PATH):
if not files:
show_animation = False
else:
show_animation = False
if not os.path.exists(TEMP_FILES_PATH):
os.makedirs(TEMP_FILES_PATH)
if os.path.exists(RESULTS_FILES_PATH):
shutil.rmtree(RESULTS_FILES_PATH)
if draw_plot:
os.makedirs(os.path.join(RESULTS_FILES_PATH, "AP"))
os.makedirs(os.path.join(RESULTS_FILES_PATH, "F1"))
os.makedirs(os.path.join(RESULTS_FILES_PATH, "Recall"))
os.makedirs(os.path.join(RESULTS_FILES_PATH, "Precision"))
if show_animation:
os.makedirs(os.path.join(RESULTS_FILES_PATH, "images", "detections_one_by_one"))
ground_truth_files_list = glob.glob(GT_PATH + '/*.txt')
if len(ground_truth_files_list) == 0:
error("Error: No ground-truth files found!")
ground_truth_files_list.sort()
gt_counter_per_class = {}
counter_images_per_class = {}
for txt_file in ground_truth_files_list:
file_id = txt_file.split(".txt", 1)[0]
file_id = os.path.basename(os.path.normpath(file_id))
temp_path = os.path.join(DR_PATH, (file_id + ".txt"))
if not os.path.exists(temp_path):
error_msg = "Error. File not found: {}\n".format(temp_path)
error(error_msg)
lines_list = file_lines_to_list(txt_file)
bounding_boxes = []
is_difficult = False
already_seen_classes = []
for line in lines_list:
try:
if "difficult" in line:
class_name, left, top, right, bottom, _difficult = line.split()
is_difficult = True
else:
class_name, left, top, right, bottom = line.split()
except:
if "difficult" in line:
line_split = line.split()
_difficult = line_split[-1]
bottom = line_split[-2]
right = line_split[-3]
top = line_split[-4]
left = line_split[-5]
class_name = ""
for name in line_split[:-5]:
class_name += name + " "
class_name = class_name[:-1]
is_difficult = True
else:
line_split = line.split()
bottom = line_split[-1]
right = line_split[-2]
top = line_split[-3]
left = line_split[-4]
class_name = ""
for name in line_split[:-4]:
class_name += name + " "
class_name = class_name[:-1]
bbox = left + " " + top + " " + right + " " + bottom
if is_difficult:
bounding_boxes.append({"class_name":class_name, "bbox":bbox, "used":False, "difficult":True})
is_difficult = False
else:
bounding_boxes.append({"class_name":class_name, "bbox":bbox, "used":False})
if class_name in gt_counter_per_class:
gt_counter_per_class[class_name] += 1
else:
gt_counter_per_class[class_name] = 1
if class_name not in already_seen_classes:
if class_name in counter_images_per_class:
counter_images_per_class[class_name] += 1
else:
counter_images_per_class[class_name] = 1
already_seen_classes.append(class_name)
with open(TEMP_FILES_PATH + "/" + file_id + "_ground_truth.json", 'w') as outfile:
json.dump(bounding_boxes, outfile)
gt_classes = list(gt_counter_per_class.keys())
gt_classes = sorted(gt_classes)
n_classes = len(gt_classes)
dr_files_list = glob.glob(DR_PATH + '/*.txt')
dr_files_list.sort()
for class_index, class_name in enumerate(gt_classes):
bounding_boxes = []
for txt_file in dr_files_list:
file_id = txt_file.split(".txt",1)[0]
file_id = os.path.basename(os.path.normpath(file_id))
temp_path = os.path.join(GT_PATH, (file_id + ".txt"))
if class_index == 0:
if not os.path.exists(temp_path):
error_msg = "Error. File not found: {}\n".format(temp_path)
error(error_msg)
lines = file_lines_to_list(txt_file)
for line in lines:
try:
tmp_class_name, confidence, left, top, right, bottom = line.split()
except:
line_split = line.split()
bottom = line_split[-1]
right = line_split[-2]
top = line_split[-3]
left = line_split[-4]
confidence = line_split[-5]
tmp_class_name = ""
for name in line_split[:-5]:
tmp_class_name += name + " "
tmp_class_name = tmp_class_name[:-1]
if tmp_class_name == class_name:
bbox = left + " " + top + " " + right + " " +bottom
bounding_boxes.append({"confidence":confidence, "file_id":file_id, "bbox":bbox})
bounding_boxes.sort(key=lambda x:float(x['confidence']), reverse=True)
with open(TEMP_FILES_PATH + "/" + class_name + "_dr.json", 'w') as outfile:
json.dump(bounding_boxes, outfile)
sum_AP = 0.0
ap_dictionary = {}
lamr_dictionary = {}
with open(RESULTS_FILES_PATH + "/results.txt", 'w') as results_file:
results_file.write("# AP and precision/recall per class\n")
count_true_positives = {}
for class_index, class_name in enumerate(gt_classes):
count_true_positives[class_name] = 0
dr_file = TEMP_FILES_PATH + "/" + class_name + "_dr.json"
dr_data = json.load(open(dr_file))
nd = len(dr_data)
tp = [0] * nd
fp = [0] * nd
score = [0] * nd
score05_idx = 0
for idx, detection in enumerate(dr_data):
file_id = detection["file_id"]
score[idx] = float(detection["confidence"])
if score[idx] > 0.5:
score05_idx = idx
if show_animation:
ground_truth_img = glob.glob1(IMG_PATH, file_id + ".*")
if len(ground_truth_img) == 0:
error("Error. Image not found with id: " + file_id)
elif len(ground_truth_img) > 1:
error("Error. Multiple image with id: " + file_id)
else:
img = cv2.imread(IMG_PATH + "/" + ground_truth_img[0])
img_cumulative_path = RESULTS_FILES_PATH + "/images/" + ground_truth_img[0]
if os.path.isfile(img_cumulative_path):
img_cumulative = cv2.imread(img_cumulative_path)
else:
img_cumulative = img.copy()
bottom_border = 60
BLACK = [0, 0, 0]
img = cv2.copyMakeBorder(img, 0, bottom_border, 0, 0, cv2.BORDER_CONSTANT, value=BLACK)
gt_file = TEMP_FILES_PATH + "/" + file_id + "_ground_truth.json"
ground_truth_data = json.load(open(gt_file))
ovmax = -1
gt_match = -1
bb = [float(x) for x in detection["bbox"].split()]
for obj in ground_truth_data:
if obj["class_name"] == class_name:
bbgt = [ float(x) for x in obj["bbox"].split() ]
bi = [max(bb[0],bbgt[0]), max(bb[1],bbgt[1]), min(bb[2],bbgt[2]), min(bb[3],bbgt[3])]
iw = bi[2] - bi[0] + 1
ih = bi[3] - bi[1] + 1
if iw > 0 and ih > 0:
ua = (bb[2] - bb[0] + 1) * (bb[3] - bb[1] + 1) + (bbgt[2] - bbgt[0]
+ 1) * (bbgt[3] - bbgt[1] + 1) - iw * ih
ov = iw * ih / ua
if ov > ovmax:
ovmax = ov
gt_match = obj
if show_animation:
status = "NO MATCH FOUND!"
min_overlap = MINOVERLAP
if ovmax >= min_overlap:
if "difficult" not in gt_match:
if not bool(gt_match["used"]):
tp[idx] = 1
gt_match["used"] = True
count_true_positives[class_name] += 1
with open(gt_file, 'w') as f:
f.write(json.dumps(ground_truth_data))
if show_animation:
status = "MATCH!"
else:
fp[idx] = 1
if show_animation:
status = "REPEATED MATCH!"
else:
fp[idx] = 1
if ovmax > 0:
status = "INSUFFICIENT OVERLAP"
"""
Draw image to show animation
"""
if show_animation:
height, widht = img.shape[:2]
white = (255,255,255)
light_blue = (255,200,100)
green = (0,255,0)
light_red = (30,30,255)
margin = 10
# 1nd line
v_pos = int(height - margin - (bottom_border / 2.0))
text = "Image: " + ground_truth_img[0] + " "
img, line_width = draw_text_in_image(img, text, (margin, v_pos), white, 0)
text = "Class [" + str(class_index) + "/" + str(n_classes) + "]: " + class_name + " "
img, line_width = draw_text_in_image(img, text, (margin + line_width, v_pos), light_blue, line_width)
if ovmax != -1:
color = light_red
if status == "INSUFFICIENT OVERLAP":
text = "IoU: {0:.2f}% ".format(ovmax*100) + "< {0:.2f}% ".format(min_overlap*100)
else:
text = "IoU: {0:.2f}% ".format(ovmax*100) + ">= {0:.2f}% ".format(min_overlap*100)
color = green
img, _ = draw_text_in_image(img, text, (margin + line_width, v_pos), color, line_width)
# 2nd line
v_pos += int(bottom_border / 2.0)
rank_pos = str(idx+1)
text = "Detection #rank: " + rank_pos + " confidence: {0:.2f}% ".format(float(detection["confidence"])*100)
img, line_width = draw_text_in_image(img, text, (margin, v_pos), white, 0)
color = light_red
if status == "MATCH!":
color = green
text = "Result: " + status + " "
img, line_width = draw_text_in_image(img, text, (margin + line_width, v_pos), color, line_width)
font = cv2.FONT_HERSHEY_SIMPLEX
if ovmax > 0:
bbgt = [ int(round(float(x))) for x in gt_match["bbox"].split() ]
cv2.rectangle(img,(bbgt[0],bbgt[1]),(bbgt[2],bbgt[3]),light_blue,2)
cv2.rectangle(img_cumulative,(bbgt[0],bbgt[1]),(bbgt[2],bbgt[3]),light_blue,2)
cv2.putText(img_cumulative, class_name, (bbgt[0],bbgt[1] - 5), font, 0.6, light_blue, 1, cv2.LINE_AA)
bb = [int(i) for i in bb]
cv2.rectangle(img,(bb[0],bb[1]),(bb[2],bb[3]),color,2)
cv2.rectangle(img_cumulative,(bb[0],bb[1]),(bb[2],bb[3]),color,2)
cv2.putText(img_cumulative, class_name, (bb[0],bb[1] - 5), font, 0.6, color, 1, cv2.LINE_AA)
cv2.imshow("Animation", img)
cv2.waitKey(20)
output_img_path = RESULTS_FILES_PATH + "/images/detections_one_by_one/" + class_name + "_detection" + str(idx) + ".jpg"
cv2.imwrite(output_img_path, img)
cv2.imwrite(img_cumulative_path, img_cumulative)
cumsum = 0
for idx, val in enumerate(fp):
fp[idx] += cumsum
cumsum += val
cumsum = 0
for idx, val in enumerate(tp):
tp[idx] += cumsum
cumsum += val
rec = tp[:]
for idx, val in enumerate(tp):
rec[idx] = float(tp[idx]) / np.maximum(gt_counter_per_class[class_name], 1)
prec = tp[:]
for idx, val in enumerate(tp):
prec[idx] = float(tp[idx]) / np.maximum((fp[idx] + tp[idx]), 1)
ap, mrec, mprec = voc_ap(rec[:], prec[:])
F1 = np.array(rec)*np.array(prec)*2 / np.where((np.array(prec)+np.array(rec))==0, 1, (np.array(prec)+np.array(rec)))
sum_AP += ap
text = "{0:.2f}%".format(ap*100) + " = " + class_name + " AP " #class_name + " AP = {0:.2f}%".format(ap*100)
if len(prec)>0:
F1_text = "{0:.2f}".format(F1[score05_idx]) + " = " + class_name + " F1 "
Recall_text = "{0:.2f}%".format(rec[score05_idx]*100) + " = " + class_name + " Recall "
Precision_text = "{0:.2f}%".format(prec[score05_idx]*100) + " = " + class_name + " Precision "
else:
F1_text = "0.00" + " = " + class_name + " F1 "
Recall_text = "0.00%" + " = " + class_name + " Recall "
Precision_text = "0.00%" + " = " + class_name + " Precision "
rounded_prec = [ '%.2f' % elem for elem in prec ]
rounded_rec = [ '%.2f' % elem for elem in rec ]
results_file.write(text + "\n Precision: " + str(rounded_prec) + "\n Recall :" + str(rounded_rec) + "\n\n")
if len(prec)>0:
print(text + "\t||\tscore_threhold=0.5 : " + "F1=" + "{0:.2f}".format(F1[score05_idx])\
+ " ; Recall=" + "{0:.2f}%".format(rec[score05_idx]*100) + " ; Precision=" + "{0:.2f}%".format(prec[score05_idx]*100))
else:
print(text + "\t||\tscore_threhold=0.5 : F1=0.00% ; Recall=0.00% ; Precision=0.00%")
ap_dictionary[class_name] = ap
n_images = counter_images_per_class[class_name]
lamr, mr, fppi = log_average_miss_rate(np.array(rec), np.array(fp), n_images)
lamr_dictionary[class_name] = lamr
if draw_plot:
plt.plot(rec, prec, '-o')
area_under_curve_x = mrec[:-1] + [mrec[-2]] + [mrec[-1]]
area_under_curve_y = mprec[:-1] + [0.0] + [mprec[-1]]
plt.fill_between(area_under_curve_x, 0, area_under_curve_y, alpha=0.2, edgecolor='r')
fig = plt.gcf()
fig.canvas.set_window_title('AP ' + class_name)
plt.title('class: ' + text)
plt.xlabel('Recall')
plt.ylabel('Precision')
axes = plt.gca()
axes.set_xlim([0.0,1.0])
axes.set_ylim([0.0,1.05])
fig.savefig(RESULTS_FILES_PATH + "/AP/" + class_name + ".png")
plt.cla()
plt.plot(score, F1, "-", color='orangered')
plt.title('class: ' + F1_text + "\nscore_threhold=0.5")
plt.xlabel('Score_Threhold')
plt.ylabel('F1')
axes = plt.gca()
axes.set_xlim([0.0,1.0])
axes.set_ylim([0.0,1.05])
fig.savefig(RESULTS_FILES_PATH + "/F1/" + class_name + ".png")
plt.cla()
plt.plot(score, rec, "-H", color='gold')
plt.title('class: ' + Recall_text + "\nscore_threhold=0.5")
plt.xlabel('Score_Threhold')
plt.ylabel('Recall')
axes = plt.gca()
axes.set_xlim([0.0,1.0])
axes.set_ylim([0.0,1.05])
fig.savefig(RESULTS_FILES_PATH + "/Recall/" + class_name + ".png")
plt.cla()
plt.plot(score, prec, "-s", color='palevioletred')
plt.title('class: ' + Precision_text + "\nscore_threhold=0.5")
plt.xlabel('Score_Threhold')
plt.ylabel('Precision')
axes = plt.gca()
axes.set_xlim([0.0,1.0])
axes.set_ylim([0.0,1.05])
fig.savefig(RESULTS_FILES_PATH + "/Precision/" + class_name + ".png")
plt.cla()
if show_animation:
cv2.destroyAllWindows()
results_file.write("\n# mAP of all classes\n")
mAP = sum_AP / n_classes
text = "mAP = {0:.2f}%".format(mAP*100)
results_file.write(text + "\n")
print(text)
shutil.rmtree(TEMP_FILES_PATH)
"""
Count total of detection-results
"""
det_counter_per_class = {}
for txt_file in dr_files_list:
lines_list = file_lines_to_list(txt_file)
for line in lines_list:
class_name = line.split()[0]
if class_name in det_counter_per_class:
det_counter_per_class[class_name] += 1
else:
det_counter_per_class[class_name] = 1
dr_classes = list(det_counter_per_class.keys())
"""
Write number of ground-truth objects per class to results.txt
"""
with open(RESULTS_FILES_PATH + "/results.txt", 'a') as results_file:
results_file.write("\n# Number of ground-truth objects per class\n")
for class_name in sorted(gt_counter_per_class):
results_file.write(class_name + ": " + str(gt_counter_per_class[class_name]) + "\n")
"""
Finish counting true positives
"""
for class_name in dr_classes:
if class_name not in gt_classes:
count_true_positives[class_name] = 0
"""
Write number of detected objects per class to results.txt
"""
with open(RESULTS_FILES_PATH + "/results.txt", 'a') as results_file:
results_file.write("\n# Number of detected objects per class\n")
for class_name in sorted(dr_classes):
n_det = det_counter_per_class[class_name]
text = class_name + ": " + str(n_det)
text += " (tp:" + str(count_true_positives[class_name]) + ""
text += ", fp:" + str(n_det - count_true_positives[class_name]) + ")\n"
results_file.write(text)
"""
Plot the total number of occurences of each class in the ground-truth
"""
if draw_plot:
window_title = "ground-truth-info"
plot_title = "ground-truth\n"
plot_title += "(" + str(len(ground_truth_files_list)) + " files and " + str(n_classes) + " classes)"
x_label = "Number of objects per class"
output_path = RESULTS_FILES_PATH + "/ground-truth-info.png"
to_show = False
plot_color = 'forestgreen'
draw_plot_func(
gt_counter_per_class,
n_classes,
window_title,
plot_title,
x_label,
output_path,
to_show,
plot_color,
'',
)
# """
# Plot the total number of occurences of each class in the "detection-results" folder
# """
# if draw_plot:
# window_title = "detection-results-info"
# # Plot title
# plot_title = "detection-results\n"
# plot_title += "(" + str(len(dr_files_list)) + " files and "
# count_non_zero_values_in_dictionary = sum(int(x) > 0 for x in list(det_counter_per_class.values()))
# plot_title += str(count_non_zero_values_in_dictionary) + " detected classes)"
# # end Plot title
# x_label = "Number of objects per class"
# output_path = RESULTS_FILES_PATH + "/detection-results-info.png"
# to_show = False
# plot_color = 'forestgreen'
# true_p_bar = count_true_positives
# draw_plot_func(
# det_counter_per_class,
# len(det_counter_per_class),
# window_title,
# plot_title,
# x_label,
# output_path,
# to_show,
# plot_color,
# true_p_bar
# )
"""
Draw log-average miss rate plot (Show lamr of all classes in decreasing order)
"""
if draw_plot:
window_title = "lamr"
plot_title = "log-average miss rate"
x_label = "log-average miss rate"
output_path = RESULTS_FILES_PATH + "/lamr.png"
to_show = False
plot_color = 'royalblue'
draw_plot_func(
lamr_dictionary,
n_classes,
window_title,
plot_title,
x_label,
output_path,
to_show,
plot_color,
""
)
"""
Draw mAP plot (Show AP's of all classes in decreasing order)
"""
if draw_plot:
window_title = "mAP"
plot_title = "mAP = {0:.2f}%".format(mAP*100)
x_label = "Average Precision"
output_path = RESULTS_FILES_PATH + "/mAP.png"
to_show = True
plot_color = 'royalblue'
draw_plot_func(
ap_dictionary,
n_classes,
window_title,
plot_title,
x_label,
output_path,
to_show,
plot_color,
""
)
def preprocess_gt(gt_path, class_names):
image_ids = os.listdir(gt_path)
results = {}
images = []
bboxes = []
for i, image_id in enumerate(image_ids):
lines_list = file_lines_to_list(os.path.join(gt_path, image_id))
boxes_per_image = []
image = {}
image_id = os.path.splitext(image_id)[0]
image['file_name'] = image_id + '.jpg'
image['width'] = 1
image['height'] = 1
#-----------------------------------------------------------------#
# 感谢 多学学英语吧 的提醒
# 解决了'Results do not correspond to current coco set'问题
#-----------------------------------------------------------------#
image['id'] = str(image_id)
for line in lines_list:
difficult = 0
if "difficult" in line:
line_split = line.split()
left, top, right, bottom, _difficult = line_split[-5:]
class_name = ""
for name in line_split[:-5]:
class_name += name + " "
class_name = class_name[:-1]
difficult = 1
else:
line_split = line.split()
left, top, right, bottom = line_split[-4:]
class_name = ""
for name in line_split[:-4]:
class_name += name + " "
class_name = class_name[:-1]
left, top, right, bottom = float(left), float(top), float(right), float(bottom)
cls_id = class_names.index(class_name) + 1
bbox = [left, top, right - left, bottom - top, difficult, str(image_id), cls_id, (right - left) * (bottom - top) - 10.0]
boxes_per_image.append(bbox)
images.append(image)
bboxes.extend(boxes_per_image)
results['images'] = images
categories = []
for i, cls in enumerate(class_names):
category = {}
category['supercategory'] = cls
category['name'] = cls
category['id'] = i + 1
categories.append(category)
results['categories'] = categories
annotations = []
for i, box in enumerate(bboxes):
annotation = {}
annotation['area'] = box[-1]
annotation['category_id'] = box[-2]
annotation['image_id'] = box[-3]
annotation['iscrowd'] = box[-4]
annotation['bbox'] = box[:4]
annotation['id'] = i
annotations.append(annotation)
results['annotations'] = annotations
return results
def preprocess_dr(dr_path, class_names):
image_ids = os.listdir(dr_path)
results = []
for image_id in image_ids:
lines_list = file_lines_to_list(os.path.join(dr_path, image_id))
image_id = os.path.splitext(image_id)[0]
for line in lines_list:
line_split = line.split()
confidence, left, top, right, bottom = line_split[-5:]
class_name = ""
for name in line_split[:-5]:
class_name += name + " "
class_name = class_name[:-1]
left, top, right, bottom = float(left), float(top), float(right), float(bottom)
result = {}
result["image_id"] = str(image_id)
result["category_id"] = class_names.index(class_name) + 1
result["bbox"] = [left, top, right - left, bottom - top]
result["score"] = float(confidence)
results.append(result)
return results
def get_coco_map(class_names, path):
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
GT_PATH = os.path.join(path, 'ground-truth')
DR_PATH = os.path.join(path, 'detection-results')
COCO_PATH = os.path.join(path, 'coco_eval')
if not os.path.exists(COCO_PATH):
os.makedirs(COCO_PATH)
GT_JSON_PATH = os.path.join(COCO_PATH, 'instances_gt.json')
DR_JSON_PATH = os.path.join(COCO_PATH, 'instances_dr.json')
with open(GT_JSON_PATH, "w") as f:
results_gt = preprocess_gt(GT_PATH, class_names)
json.dump(results_gt, f, indent=4)
with open(DR_JSON_PATH, "w") as f:
results_dr = preprocess_dr(DR_PATH, class_names)
json.dump(results_dr, f, indent=4)
cocoGt = COCO(GT_JSON_PATH)
cocoDt = cocoGt.loadRes(DR_JSON_PATH)
cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
cocoEval.evaluate()
cocoEval.accumulate()
cocoEval.summarize()
|