File size: 3,605 Bytes
4a3ab35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import torch
import torch.nn as nn

from nets.CSPdarknet53_tiny import darknet53_tiny
from nets.attention import cbam_block, eca_block, se_block, CA_Block

attention_block = [se_block, cbam_block, eca_block, CA_Block]

#-------------------------------------------------#
#   卷积块 -> 卷积 + 标准化 + 激活函数
#   Conv2d + BatchNormalization + LeakyReLU
#-------------------------------------------------#
class BasicConv(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, stride=1):
        super(BasicConv, self).__init__()

        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, kernel_size//2, bias=False)
        self.bn = nn.BatchNorm2d(out_channels)
        self.activation = nn.LeakyReLU(0.1)

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        x = self.activation(x)
        return x

#---------------------------------------------------#
#   卷积 + 上采样
#---------------------------------------------------#
class Upsample(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(Upsample, self).__init__()

        self.upsample = nn.Sequential(
            BasicConv(in_channels, out_channels, 1),
            nn.Upsample(scale_factor=2, mode='nearest')
        )

    def forward(self, x,):
        x = self.upsample(x)
        return x

#---------------------------------------------------#
#   最后获得yolov4的输出
#---------------------------------------------------#
def yolo_head(filters_list, in_filters):
    m = nn.Sequential(
        BasicConv(in_filters, filters_list[0], 3),
        nn.Conv2d(filters_list[0], filters_list[1], 1),
    )
    return m
#---------------------------------------------------#
#   yolo_body
#---------------------------------------------------#
class YoloBodytiny(nn.Module):
    def __init__(self, anchors_mask, num_classes, phi=0, pretrained=False):
        super(YoloBodytiny, self).__init__()
        self.phi            = phi
        self.backbone       = darknet53_tiny(pretrained)

        self.conv_for_P5    = BasicConv(512,256,1)
        self.yolo_headP5    = yolo_head([512, len(anchors_mask[0]) * (5 + num_classes)],256)

        self.upsample       = Upsample(256,128)
        self.yolo_headP4    = yolo_head([256, len(anchors_mask[1]) * (5 + num_classes)],384)

        if 1 <= self.phi and self.phi <= 4:
            self.feat1_att      = attention_block[self.phi - 1](256)
            self.feat2_att      = attention_block[self.phi - 1](512)
            self.upsample_att   = attention_block[self.phi - 1](128)

    def forward(self, x):
        #---------------------------------------------------#
        #   生成CSPdarknet53_tiny的主干模型
        #   feat1的shape为26,26,256
        #   feat2的shape为13,13,512
        #---------------------------------------------------#
        feat1, feat2 = self.backbone(x)
        if 1 <= self.phi and self.phi <= 4:
            feat1 = self.feat1_att(feat1)
            feat2 = self.feat2_att(feat2)

        # 13,13,512 -> 13,13,256
        P5 = self.conv_for_P5(feat2)
        # 13,13,256 -> 13,13,512 -> 13,13,255
        out0 = self.yolo_headP5(P5) 

        # 13,13,256 -> 13,13,128 -> 26,26,128
        P5_Upsample = self.upsample(P5)
        # 26,26,256 + 26,26,128 -> 26,26,384
        if 1 <= self.phi and self.phi <= 4:
            P5_Upsample = self.upsample_att(P5_Upsample)
        P4 = torch.cat([P5_Upsample,feat1],axis=1)

        # 26,26,384 -> 26,26,256 -> 26,26,255
        out1 = self.yolo_headP4(P4)
        
        return out0, out1