File size: 36,082 Bytes
4a3ab35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
import glob
import json
import math
import operator
import os
import shutil
import sys

import cv2
import matplotlib.pyplot as plt
import numpy as np

'''
    0,0 ------> x (width)
     |
     |  (Left,Top)
     |      *_________
     |      |         |
            |         |
     y      |_________|
  (height)            *
                (Right,Bottom)
'''

def log_average_miss_rate(precision, fp_cumsum, num_images):
    """
        log-average miss rate:
            Calculated by averaging miss rates at 9 evenly spaced FPPI points
            between 10e-2 and 10e0, in log-space.

        output:
                lamr | log-average miss rate
                mr | miss rate
                fppi | false positives per image

        references:
            [1] Dollar, Piotr, et al. "Pedestrian Detection: An Evaluation of the
               State of the Art." Pattern Analysis and Machine Intelligence, IEEE
               Transactions on 34.4 (2012): 743 - 761.
    """

    if precision.size == 0:
        lamr = 0
        mr = 1
        fppi = 0
        return lamr, mr, fppi

    fppi = fp_cumsum / float(num_images)
    mr = (1 - precision)

    fppi_tmp = np.insert(fppi, 0, -1.0)
    mr_tmp = np.insert(mr, 0, 1.0)

    ref = np.logspace(-2.0, 0.0, num = 9)
    for i, ref_i in enumerate(ref):
        j = np.where(fppi_tmp <= ref_i)[-1][-1]
        ref[i] = mr_tmp[j]

    lamr = math.exp(np.mean(np.log(np.maximum(1e-10, ref))))

    return lamr, mr, fppi

"""
 throw error and exit
"""
def error(msg):
    print(msg)
    sys.exit(0)

"""
 check if the number is a float between 0.0 and 1.0
"""
def is_float_between_0_and_1(value):
    try:
        val = float(value)
        if val > 0.0 and val < 1.0:
            return True
        else:
            return False
    except ValueError:
        return False

"""
 Calculate the AP given the recall and precision array
    1st) We compute a version of the measured precision/recall curve with
         precision monotonically decreasing
    2nd) We compute the AP as the area under this curve by numerical integration.
"""
def voc_ap(rec, prec):
    """
    --- Official matlab code VOC2012---
    mrec=[0 ; rec ; 1];
    mpre=[0 ; prec ; 0];
    for i=numel(mpre)-1:-1:1
            mpre(i)=max(mpre(i),mpre(i+1));
    end
    i=find(mrec(2:end)~=mrec(1:end-1))+1;
    ap=sum((mrec(i)-mrec(i-1)).*mpre(i));
    """
    rec.insert(0, 0.0) # insert 0.0 at begining of list
    rec.append(1.0) # insert 1.0 at end of list
    mrec = rec[:]
    prec.insert(0, 0.0) # insert 0.0 at begining of list
    prec.append(0.0) # insert 0.0 at end of list
    mpre = prec[:]
    """
     This part makes the precision monotonically decreasing
        (goes from the end to the beginning)
        matlab: for i=numel(mpre)-1:-1:1
                    mpre(i)=max(mpre(i),mpre(i+1));
    """
    for i in range(len(mpre)-2, -1, -1):
        mpre[i] = max(mpre[i], mpre[i+1])
    """
     This part creates a list of indexes where the recall changes
        matlab: i=find(mrec(2:end)~=mrec(1:end-1))+1;
    """
    i_list = []
    for i in range(1, len(mrec)):
        if mrec[i] != mrec[i-1]:
            i_list.append(i) # if it was matlab would be i + 1
    """
     The Average Precision (AP) is the area under the curve
        (numerical integration)
        matlab: ap=sum((mrec(i)-mrec(i-1)).*mpre(i));
    """
    ap = 0.0
    for i in i_list:
        ap += ((mrec[i]-mrec[i-1])*mpre[i])
    return ap, mrec, mpre


"""
 Convert the lines of a file to a list
"""
def file_lines_to_list(path):
    # open txt file lines to a list
    with open(path) as f:
        content = f.readlines()
    # remove whitespace characters like `\n` at the end of each line
    content = [x.strip() for x in content]
    return content

"""
 Draws text in image
"""
def draw_text_in_image(img, text, pos, color, line_width):
    font = cv2.FONT_HERSHEY_PLAIN
    fontScale = 1
    lineType = 1
    bottomLeftCornerOfText = pos
    cv2.putText(img, text,
            bottomLeftCornerOfText,
            font,
            fontScale,
            color,
            lineType)
    text_width, _ = cv2.getTextSize(text, font, fontScale, lineType)[0]
    return img, (line_width + text_width)

"""
 Plot - adjust axes
"""
def adjust_axes(r, t, fig, axes):
    # get text width for re-scaling
    bb = t.get_window_extent(renderer=r)
    text_width_inches = bb.width / fig.dpi
    # get axis width in inches
    current_fig_width = fig.get_figwidth()
    new_fig_width = current_fig_width + text_width_inches
    propotion = new_fig_width / current_fig_width
    # get axis limit
    x_lim = axes.get_xlim()
    axes.set_xlim([x_lim[0], x_lim[1]*propotion])

"""
 Draw plot using Matplotlib
"""
def draw_plot_func(dictionary, n_classes, window_title, plot_title, x_label, output_path, to_show, plot_color, true_p_bar):
    # sort the dictionary by decreasing value, into a list of tuples
    sorted_dic_by_value = sorted(dictionary.items(), key=operator.itemgetter(1))
    # unpacking the list of tuples into two lists
    sorted_keys, sorted_values = zip(*sorted_dic_by_value)
    # 
    if true_p_bar != "":
        """
         Special case to draw in:
            - green -> TP: True Positives (object detected and matches ground-truth)
            - red -> FP: False Positives (object detected but does not match ground-truth)
            - orange -> FN: False Negatives (object not detected but present in the ground-truth)
        """
        fp_sorted = []
        tp_sorted = []
        for key in sorted_keys:
            fp_sorted.append(dictionary[key] - true_p_bar[key])
            tp_sorted.append(true_p_bar[key])
        plt.barh(range(n_classes), fp_sorted, align='center', color='crimson', label='False Positive')
        plt.barh(range(n_classes), tp_sorted, align='center', color='forestgreen', label='True Positive', left=fp_sorted)
        # add legend
        plt.legend(loc='lower right')
        """
         Write number on side of bar
        """
        fig = plt.gcf() # gcf - get current figure
        axes = plt.gca()
        r = fig.canvas.get_renderer()
        for i, val in enumerate(sorted_values):
            fp_val = fp_sorted[i]
            tp_val = tp_sorted[i]
            fp_str_val = " " + str(fp_val)
            tp_str_val = fp_str_val + " " + str(tp_val)
            # trick to paint multicolor with offset:
            # first paint everything and then repaint the first number
            t = plt.text(val, i, tp_str_val, color='forestgreen', va='center', fontweight='bold')
            plt.text(val, i, fp_str_val, color='crimson', va='center', fontweight='bold')
            if i == (len(sorted_values)-1): # largest bar
                adjust_axes(r, t, fig, axes)
    else:
        plt.barh(range(n_classes), sorted_values, color=plot_color)
        """
         Write number on side of bar
        """
        fig = plt.gcf() # gcf - get current figure
        axes = plt.gca()
        r = fig.canvas.get_renderer()
        for i, val in enumerate(sorted_values):
            str_val = " " + str(val) # add a space before
            if val < 1.0:
                str_val = " {0:.2f}".format(val)
            t = plt.text(val, i, str_val, color=plot_color, va='center', fontweight='bold')
            # re-set axes to show number inside the figure
            if i == (len(sorted_values)-1): # largest bar
                adjust_axes(r, t, fig, axes)
    # set window title
    fig.canvas.set_window_title(window_title)
    # write classes in y axis
    tick_font_size = 12
    plt.yticks(range(n_classes), sorted_keys, fontsize=tick_font_size)
    """
     Re-scale height accordingly
    """
    init_height = fig.get_figheight()
    # comput the matrix height in points and inches
    dpi = fig.dpi
    height_pt = n_classes * (tick_font_size * 1.4) # 1.4 (some spacing)
    height_in = height_pt / dpi
    # compute the required figure height 
    top_margin = 0.15 # in percentage of the figure height
    bottom_margin = 0.05 # in percentage of the figure height
    figure_height = height_in / (1 - top_margin - bottom_margin)
    # set new height
    if figure_height > init_height:
        fig.set_figheight(figure_height)

    # set plot title
    plt.title(plot_title, fontsize=14)
    # set axis titles
    # plt.xlabel('classes')
    plt.xlabel(x_label, fontsize='large')
    # adjust size of window
    fig.tight_layout()
    # save the plot
    fig.savefig(output_path)
    # show image
    if to_show:
        plt.show()
    # close the plot
    plt.close()

def get_map(MINOVERLAP, draw_plot, path = './map_out'):
    GT_PATH             = os.path.join(path, 'ground-truth')
    DR_PATH             = os.path.join(path, 'detection-results')
    IMG_PATH            = os.path.join(path, 'images-optional')
    TEMP_FILES_PATH     = os.path.join(path, '.temp_files')
    RESULTS_FILES_PATH  = os.path.join(path, 'results')

    show_animation = True
    if os.path.exists(IMG_PATH): 
        for dirpath, dirnames, files in os.walk(IMG_PATH):
            if not files:
                show_animation = False
    else:
        show_animation = False

    if not os.path.exists(TEMP_FILES_PATH):
        os.makedirs(TEMP_FILES_PATH)
        
    if os.path.exists(RESULTS_FILES_PATH):
        shutil.rmtree(RESULTS_FILES_PATH)
    if draw_plot:
        os.makedirs(os.path.join(RESULTS_FILES_PATH, "AP"))
        os.makedirs(os.path.join(RESULTS_FILES_PATH, "F1"))
        os.makedirs(os.path.join(RESULTS_FILES_PATH, "Recall"))
        os.makedirs(os.path.join(RESULTS_FILES_PATH, "Precision"))
    if show_animation:
        os.makedirs(os.path.join(RESULTS_FILES_PATH, "images", "detections_one_by_one"))

    ground_truth_files_list = glob.glob(GT_PATH + '/*.txt')
    if len(ground_truth_files_list) == 0:
        error("Error: No ground-truth files found!")
    ground_truth_files_list.sort()
    gt_counter_per_class     = {}
    counter_images_per_class = {}

    for txt_file in ground_truth_files_list:
        file_id     = txt_file.split(".txt", 1)[0]
        file_id     = os.path.basename(os.path.normpath(file_id))
        temp_path   = os.path.join(DR_PATH, (file_id + ".txt"))
        if not os.path.exists(temp_path):
            error_msg = "Error. File not found: {}\n".format(temp_path)
            error(error_msg)
        lines_list      = file_lines_to_list(txt_file)
        bounding_boxes  = []
        is_difficult    = False
        already_seen_classes = []
        for line in lines_list:
            try:
                if "difficult" in line:
                    class_name, left, top, right, bottom, _difficult = line.split()
                    is_difficult = True
                else:
                    class_name, left, top, right, bottom = line.split()
            except:
                if "difficult" in line:
                    line_split  = line.split()
                    _difficult  = line_split[-1]
                    bottom      = line_split[-2]
                    right       = line_split[-3]
                    top         = line_split[-4]
                    left        = line_split[-5]
                    class_name  = ""
                    for name in line_split[:-5]:
                        class_name += name + " "
                    class_name  = class_name[:-1]
                    is_difficult = True
                else:
                    line_split  = line.split()
                    bottom      = line_split[-1]
                    right       = line_split[-2]
                    top         = line_split[-3]
                    left        = line_split[-4]
                    class_name  = ""
                    for name in line_split[:-4]:
                        class_name += name + " "
                    class_name = class_name[:-1]

            bbox = left + " " + top + " " + right + " " + bottom
            if is_difficult:
                bounding_boxes.append({"class_name":class_name, "bbox":bbox, "used":False, "difficult":True})
                is_difficult = False
            else:
                bounding_boxes.append({"class_name":class_name, "bbox":bbox, "used":False})
                if class_name in gt_counter_per_class:
                    gt_counter_per_class[class_name] += 1
                else:
                    gt_counter_per_class[class_name] = 1

                if class_name not in already_seen_classes:
                    if class_name in counter_images_per_class:
                        counter_images_per_class[class_name] += 1
                    else:
                        counter_images_per_class[class_name] = 1
                    already_seen_classes.append(class_name)

        with open(TEMP_FILES_PATH + "/" + file_id + "_ground_truth.json", 'w') as outfile:
            json.dump(bounding_boxes, outfile)

    gt_classes  = list(gt_counter_per_class.keys())
    gt_classes  = sorted(gt_classes)
    n_classes   = len(gt_classes)

    dr_files_list = glob.glob(DR_PATH + '/*.txt')
    dr_files_list.sort()
    for class_index, class_name in enumerate(gt_classes):
        bounding_boxes = []
        for txt_file in dr_files_list:
            file_id = txt_file.split(".txt",1)[0]
            file_id = os.path.basename(os.path.normpath(file_id))
            temp_path = os.path.join(GT_PATH, (file_id + ".txt"))
            if class_index == 0:
                if not os.path.exists(temp_path):
                    error_msg = "Error. File not found: {}\n".format(temp_path)
                    error(error_msg)
            lines = file_lines_to_list(txt_file)
            for line in lines:
                try:
                    tmp_class_name, confidence, left, top, right, bottom = line.split()
                except:
                    line_split      = line.split()
                    bottom          = line_split[-1]
                    right           = line_split[-2]
                    top             = line_split[-3]
                    left            = line_split[-4]
                    confidence      = line_split[-5]
                    tmp_class_name  = ""
                    for name in line_split[:-5]:
                        tmp_class_name += name + " "
                    tmp_class_name  = tmp_class_name[:-1]

                if tmp_class_name == class_name:
                    bbox = left + " " + top + " " + right + " " +bottom
                    bounding_boxes.append({"confidence":confidence, "file_id":file_id, "bbox":bbox})

        bounding_boxes.sort(key=lambda x:float(x['confidence']), reverse=True)
        with open(TEMP_FILES_PATH + "/" + class_name + "_dr.json", 'w') as outfile:
            json.dump(bounding_boxes, outfile)

    sum_AP = 0.0
    ap_dictionary = {}
    lamr_dictionary = {}
    with open(RESULTS_FILES_PATH + "/results.txt", 'w') as results_file:
        results_file.write("# AP and precision/recall per class\n")
        count_true_positives = {}

        for class_index, class_name in enumerate(gt_classes):
            count_true_positives[class_name] = 0
            dr_file = TEMP_FILES_PATH + "/" + class_name + "_dr.json"
            dr_data = json.load(open(dr_file))

            nd          = len(dr_data)
            tp          = [0] * nd
            fp          = [0] * nd
            score       = [0] * nd
            score05_idx = 0
            for idx, detection in enumerate(dr_data):
                file_id     = detection["file_id"]
                score[idx]  = float(detection["confidence"])
                if score[idx] > 0.5:
                    score05_idx = idx

                if show_animation:
                    ground_truth_img = glob.glob1(IMG_PATH, file_id + ".*")
                    if len(ground_truth_img) == 0:
                        error("Error. Image not found with id: " + file_id)
                    elif len(ground_truth_img) > 1:
                        error("Error. Multiple image with id: " + file_id)
                    else:
                        img = cv2.imread(IMG_PATH + "/" + ground_truth_img[0])
                        img_cumulative_path = RESULTS_FILES_PATH + "/images/" + ground_truth_img[0]
                        if os.path.isfile(img_cumulative_path):
                            img_cumulative = cv2.imread(img_cumulative_path)
                        else:
                            img_cumulative = img.copy()
                        bottom_border = 60
                        BLACK = [0, 0, 0]
                        img = cv2.copyMakeBorder(img, 0, bottom_border, 0, 0, cv2.BORDER_CONSTANT, value=BLACK)

                gt_file             = TEMP_FILES_PATH + "/" + file_id + "_ground_truth.json"
                ground_truth_data   = json.load(open(gt_file))
                ovmax       = -1
                gt_match    = -1
                bb          = [float(x) for x in detection["bbox"].split()]
                for obj in ground_truth_data:
                    if obj["class_name"] == class_name:
                        bbgt    = [ float(x) for x in obj["bbox"].split() ]
                        bi      = [max(bb[0],bbgt[0]), max(bb[1],bbgt[1]), min(bb[2],bbgt[2]), min(bb[3],bbgt[3])]
                        iw      = bi[2] - bi[0] + 1
                        ih      = bi[3] - bi[1] + 1
                        if iw > 0 and ih > 0:
                            ua = (bb[2] - bb[0] + 1) * (bb[3] - bb[1] + 1) + (bbgt[2] - bbgt[0]
                                            + 1) * (bbgt[3] - bbgt[1] + 1) - iw * ih
                            ov = iw * ih / ua
                            if ov > ovmax:
                                ovmax = ov
                                gt_match = obj

                if show_animation:
                    status = "NO MATCH FOUND!" 
                    
                min_overlap = MINOVERLAP
                if ovmax >= min_overlap:
                    if "difficult" not in gt_match:
                        if not bool(gt_match["used"]):
                            tp[idx] = 1
                            gt_match["used"] = True
                            count_true_positives[class_name] += 1
                            with open(gt_file, 'w') as f:
                                    f.write(json.dumps(ground_truth_data))
                            if show_animation:
                                status = "MATCH!"
                        else:
                            fp[idx] = 1
                            if show_animation:
                                status = "REPEATED MATCH!"
                else:
                    fp[idx] = 1
                    if ovmax > 0:
                        status = "INSUFFICIENT OVERLAP"

                """
                Draw image to show animation
                """
                if show_animation:
                    height, widht = img.shape[:2]
                    white           = (255,255,255)
                    light_blue      = (255,200,100)
                    green           = (0,255,0)
                    light_red       = (30,30,255)
                    margin          = 10
                    # 1nd line
                    v_pos           = int(height - margin - (bottom_border / 2.0))
                    text            = "Image: " + ground_truth_img[0] + " "
                    img, line_width = draw_text_in_image(img, text, (margin, v_pos), white, 0)
                    text            = "Class [" + str(class_index) + "/" + str(n_classes) + "]: " + class_name + " "
                    img, line_width = draw_text_in_image(img, text, (margin + line_width, v_pos), light_blue, line_width)
                    if ovmax != -1:
                        color       = light_red
                        if status   == "INSUFFICIENT OVERLAP":
                            text    = "IoU: {0:.2f}% ".format(ovmax*100) + "< {0:.2f}% ".format(min_overlap*100)
                        else:
                            text    = "IoU: {0:.2f}% ".format(ovmax*100) + ">= {0:.2f}% ".format(min_overlap*100)
                            color   = green
                        img, _ = draw_text_in_image(img, text, (margin + line_width, v_pos), color, line_width)
                    # 2nd line
                    v_pos           += int(bottom_border / 2.0)
                    rank_pos        = str(idx+1)
                    text            = "Detection #rank: " + rank_pos + " confidence: {0:.2f}% ".format(float(detection["confidence"])*100)
                    img, line_width = draw_text_in_image(img, text, (margin, v_pos), white, 0)
                    color           = light_red
                    if status == "MATCH!":
                        color = green
                    text            = "Result: " + status + " "
                    img, line_width = draw_text_in_image(img, text, (margin + line_width, v_pos), color, line_width)

                    font = cv2.FONT_HERSHEY_SIMPLEX
                    if ovmax > 0: 
                        bbgt = [ int(round(float(x))) for x in gt_match["bbox"].split() ]
                        cv2.rectangle(img,(bbgt[0],bbgt[1]),(bbgt[2],bbgt[3]),light_blue,2)
                        cv2.rectangle(img_cumulative,(bbgt[0],bbgt[1]),(bbgt[2],bbgt[3]),light_blue,2)
                        cv2.putText(img_cumulative, class_name, (bbgt[0],bbgt[1] - 5), font, 0.6, light_blue, 1, cv2.LINE_AA)
                    bb = [int(i) for i in bb]
                    cv2.rectangle(img,(bb[0],bb[1]),(bb[2],bb[3]),color,2)
                    cv2.rectangle(img_cumulative,(bb[0],bb[1]),(bb[2],bb[3]),color,2)
                    cv2.putText(img_cumulative, class_name, (bb[0],bb[1] - 5), font, 0.6, color, 1, cv2.LINE_AA)

                    cv2.imshow("Animation", img)
                    cv2.waitKey(20) 
                    output_img_path = RESULTS_FILES_PATH + "/images/detections_one_by_one/" + class_name + "_detection" + str(idx) + ".jpg"
                    cv2.imwrite(output_img_path, img)
                    cv2.imwrite(img_cumulative_path, img_cumulative)

            cumsum = 0
            for idx, val in enumerate(fp):
                fp[idx] += cumsum
                cumsum += val
                
            cumsum = 0
            for idx, val in enumerate(tp):
                tp[idx] += cumsum
                cumsum += val

            rec = tp[:]
            for idx, val in enumerate(tp):
                rec[idx] = float(tp[idx]) / np.maximum(gt_counter_per_class[class_name], 1)

            prec = tp[:]
            for idx, val in enumerate(tp):
                prec[idx] = float(tp[idx]) / np.maximum((fp[idx] + tp[idx]), 1)

            ap, mrec, mprec = voc_ap(rec[:], prec[:])
            F1  = np.array(rec)*np.array(prec)*2 / np.where((np.array(prec)+np.array(rec))==0, 1, (np.array(prec)+np.array(rec)))

            sum_AP  += ap
            text    = "{0:.2f}%".format(ap*100) + " = " + class_name + " AP " #class_name + " AP = {0:.2f}%".format(ap*100)

            if len(prec)>0:
                F1_text         = "{0:.2f}".format(F1[score05_idx]) + " = " + class_name + " F1 "
                Recall_text     = "{0:.2f}%".format(rec[score05_idx]*100) + " = " + class_name + " Recall "
                Precision_text  = "{0:.2f}%".format(prec[score05_idx]*100) + " = " + class_name + " Precision "
            else:
                F1_text         = "0.00" + " = " + class_name + " F1 " 
                Recall_text     = "0.00%" + " = " + class_name + " Recall " 
                Precision_text  = "0.00%" + " = " + class_name + " Precision " 

            rounded_prec    = [ '%.2f' % elem for elem in prec ]
            rounded_rec     = [ '%.2f' % elem for elem in rec ]
            results_file.write(text + "\n Precision: " + str(rounded_prec) + "\n Recall :" + str(rounded_rec) + "\n\n")
            if len(prec)>0:
                print(text + "\t||\tscore_threhold=0.5 : " + "F1=" + "{0:.2f}".format(F1[score05_idx])\
                    + " ; Recall=" + "{0:.2f}%".format(rec[score05_idx]*100) + " ; Precision=" + "{0:.2f}%".format(prec[score05_idx]*100))
            else:
                print(text + "\t||\tscore_threhold=0.5 : F1=0.00% ; Recall=0.00% ; Precision=0.00%")
            ap_dictionary[class_name] = ap

            n_images = counter_images_per_class[class_name]
            lamr, mr, fppi = log_average_miss_rate(np.array(rec), np.array(fp), n_images)
            lamr_dictionary[class_name] = lamr

            if draw_plot:
                plt.plot(rec, prec, '-o')
                area_under_curve_x = mrec[:-1] + [mrec[-2]] + [mrec[-1]]
                area_under_curve_y = mprec[:-1] + [0.0] + [mprec[-1]]
                plt.fill_between(area_under_curve_x, 0, area_under_curve_y, alpha=0.2, edgecolor='r')

                fig = plt.gcf()
                fig.canvas.set_window_title('AP ' + class_name)

                plt.title('class: ' + text)
                plt.xlabel('Recall')
                plt.ylabel('Precision')
                axes = plt.gca()
                axes.set_xlim([0.0,1.0])
                axes.set_ylim([0.0,1.05]) 
                fig.savefig(RESULTS_FILES_PATH + "/AP/" + class_name + ".png")
                plt.cla()

                plt.plot(score, F1, "-", color='orangered')
                plt.title('class: ' + F1_text + "\nscore_threhold=0.5")
                plt.xlabel('Score_Threhold')
                plt.ylabel('F1')
                axes = plt.gca()
                axes.set_xlim([0.0,1.0])
                axes.set_ylim([0.0,1.05])
                fig.savefig(RESULTS_FILES_PATH + "/F1/" + class_name + ".png")
                plt.cla()

                plt.plot(score, rec, "-H", color='gold')
                plt.title('class: ' + Recall_text + "\nscore_threhold=0.5")
                plt.xlabel('Score_Threhold')
                plt.ylabel('Recall')
                axes = plt.gca()
                axes.set_xlim([0.0,1.0])
                axes.set_ylim([0.0,1.05])
                fig.savefig(RESULTS_FILES_PATH + "/Recall/" + class_name + ".png")
                plt.cla()

                plt.plot(score, prec, "-s", color='palevioletred')
                plt.title('class: ' + Precision_text + "\nscore_threhold=0.5")
                plt.xlabel('Score_Threhold')
                plt.ylabel('Precision')
                axes = plt.gca()
                axes.set_xlim([0.0,1.0])
                axes.set_ylim([0.0,1.05])
                fig.savefig(RESULTS_FILES_PATH + "/Precision/" + class_name + ".png")
                plt.cla()
                
        if show_animation:
            cv2.destroyAllWindows()

        results_file.write("\n# mAP of all classes\n")
        mAP     = sum_AP / n_classes
        text    = "mAP = {0:.2f}%".format(mAP*100)
        results_file.write(text + "\n")
        print(text)

    shutil.rmtree(TEMP_FILES_PATH)

    """
    Count total of detection-results
    """
    det_counter_per_class = {}
    for txt_file in dr_files_list:
        lines_list = file_lines_to_list(txt_file)
        for line in lines_list:
            class_name = line.split()[0]
            if class_name in det_counter_per_class:
                det_counter_per_class[class_name] += 1
            else:
                det_counter_per_class[class_name] = 1
    dr_classes = list(det_counter_per_class.keys())

    """
    Write number of ground-truth objects per class to results.txt
    """
    with open(RESULTS_FILES_PATH + "/results.txt", 'a') as results_file:
        results_file.write("\n# Number of ground-truth objects per class\n")
        for class_name in sorted(gt_counter_per_class):
            results_file.write(class_name + ": " + str(gt_counter_per_class[class_name]) + "\n")

    """
    Finish counting true positives
    """
    for class_name in dr_classes:
        if class_name not in gt_classes:
            count_true_positives[class_name] = 0

    """
    Write number of detected objects per class to results.txt
    """
    with open(RESULTS_FILES_PATH + "/results.txt", 'a') as results_file:
        results_file.write("\n# Number of detected objects per class\n")
        for class_name in sorted(dr_classes):
            n_det = det_counter_per_class[class_name]
            text = class_name + ": " + str(n_det)
            text += " (tp:" + str(count_true_positives[class_name]) + ""
            text += ", fp:" + str(n_det - count_true_positives[class_name]) + ")\n"
            results_file.write(text)

    """
    Plot the total number of occurences of each class in the ground-truth
    """
    if draw_plot:
        window_title = "ground-truth-info"
        plot_title = "ground-truth\n"
        plot_title += "(" + str(len(ground_truth_files_list)) + " files and " + str(n_classes) + " classes)"
        x_label = "Number of objects per class"
        output_path = RESULTS_FILES_PATH + "/ground-truth-info.png"
        to_show = False
        plot_color = 'forestgreen'
        draw_plot_func(
            gt_counter_per_class,
            n_classes,
            window_title,
            plot_title,
            x_label,
            output_path,
            to_show,
            plot_color,
            '',
            )

    # """
    # Plot the total number of occurences of each class in the "detection-results" folder
    # """
    # if draw_plot:
    #     window_title = "detection-results-info"
    #     # Plot title
    #     plot_title = "detection-results\n"
    #     plot_title += "(" + str(len(dr_files_list)) + " files and "
    #     count_non_zero_values_in_dictionary = sum(int(x) > 0 for x in list(det_counter_per_class.values()))
    #     plot_title += str(count_non_zero_values_in_dictionary) + " detected classes)"
    #     # end Plot title
    #     x_label = "Number of objects per class"
    #     output_path = RESULTS_FILES_PATH + "/detection-results-info.png"
    #     to_show = False
    #     plot_color = 'forestgreen'
    #     true_p_bar = count_true_positives
    #     draw_plot_func(
    #         det_counter_per_class,
    #         len(det_counter_per_class),
    #         window_title,
    #         plot_title,
    #         x_label,
    #         output_path,
    #         to_show,
    #         plot_color,
    #         true_p_bar
    #         )

    """
    Draw log-average miss rate plot (Show lamr of all classes in decreasing order)
    """
    if draw_plot:
        window_title = "lamr"
        plot_title = "log-average miss rate"
        x_label = "log-average miss rate"
        output_path = RESULTS_FILES_PATH + "/lamr.png"
        to_show = False
        plot_color = 'royalblue'
        draw_plot_func(
            lamr_dictionary,
            n_classes,
            window_title,
            plot_title,
            x_label,
            output_path,
            to_show,
            plot_color,
            ""
            )

    """
    Draw mAP plot (Show AP's of all classes in decreasing order)
    """
    if draw_plot:
        window_title = "mAP"
        plot_title = "mAP = {0:.2f}%".format(mAP*100)
        x_label = "Average Precision"
        output_path = RESULTS_FILES_PATH + "/mAP.png"
        to_show = True
        plot_color = 'royalblue'
        draw_plot_func(
            ap_dictionary,
            n_classes,
            window_title,
            plot_title,
            x_label,
            output_path,
            to_show,
            plot_color,
            ""
            )

def preprocess_gt(gt_path, class_names):
    image_ids   = os.listdir(gt_path)
    results = {}

    images = []
    bboxes = []
    for i, image_id in enumerate(image_ids):
        lines_list      = file_lines_to_list(os.path.join(gt_path, image_id))
        boxes_per_image = []
        image           = {}
        image_id        = os.path.splitext(image_id)[0]
        image['file_name'] = image_id + '.jpg'
        image['width']     = 1
        image['height']    = 1
        #-----------------------------------------------------------------#
        #   感谢 多学学英语吧 的提醒
        #   解决了'Results do not correspond to current coco set'问题
        #-----------------------------------------------------------------#
        image['id']        = str(image_id)

        for line in lines_list:
            difficult = 0 
            if "difficult" in line:
                line_split  = line.split()
                left, top, right, bottom, _difficult = line_split[-5:]
                class_name  = ""
                for name in line_split[:-5]:
                    class_name += name + " "
                class_name  = class_name[:-1]
                difficult = 1
            else:
                line_split  = line.split()
                left, top, right, bottom = line_split[-4:]
                class_name  = ""
                for name in line_split[:-4]:
                    class_name += name + " "
                class_name = class_name[:-1]
            
            left, top, right, bottom = float(left), float(top), float(right), float(bottom)
            cls_id  = class_names.index(class_name) + 1
            bbox    = [left, top, right - left, bottom - top, difficult, str(image_id), cls_id, (right - left) * (bottom - top) - 10.0]
            boxes_per_image.append(bbox)
        images.append(image)
        bboxes.extend(boxes_per_image)
    results['images']        = images

    categories = []
    for i, cls in enumerate(class_names):
        category = {}
        category['supercategory']   = cls
        category['name']            = cls
        category['id']              = i + 1
        categories.append(category)
    results['categories']   = categories

    annotations = []
    for i, box in enumerate(bboxes):
        annotation = {}
        annotation['area']        = box[-1]
        annotation['category_id'] = box[-2]
        annotation['image_id']    = box[-3]
        annotation['iscrowd']     = box[-4]
        annotation['bbox']        = box[:4]
        annotation['id']          = i
        annotations.append(annotation)
    results['annotations'] = annotations
    return results

def preprocess_dr(dr_path, class_names):
    image_ids = os.listdir(dr_path)
    results = []
    for image_id in image_ids:
        lines_list      = file_lines_to_list(os.path.join(dr_path, image_id))
        image_id        = os.path.splitext(image_id)[0]
        for line in lines_list:
            line_split  = line.split()
            confidence, left, top, right, bottom = line_split[-5:]
            class_name  = ""
            for name in line_split[:-5]:
                class_name += name + " "
            class_name  = class_name[:-1]
            left, top, right, bottom = float(left), float(top), float(right), float(bottom)
            result                  = {}
            result["image_id"]      = str(image_id)
            result["category_id"]   = class_names.index(class_name) + 1
            result["bbox"]          = [left, top, right - left, bottom - top]
            result["score"]         = float(confidence)
            results.append(result)
    return results
 
def get_coco_map(class_names, path):
    from pycocotools.coco import COCO
    from pycocotools.cocoeval import COCOeval
    
    GT_PATH     = os.path.join(path, 'ground-truth')
    DR_PATH     = os.path.join(path, 'detection-results')
    COCO_PATH   = os.path.join(path, 'coco_eval')

    if not os.path.exists(COCO_PATH):
        os.makedirs(COCO_PATH)

    GT_JSON_PATH = os.path.join(COCO_PATH, 'instances_gt.json')
    DR_JSON_PATH = os.path.join(COCO_PATH, 'instances_dr.json')

    with open(GT_JSON_PATH, "w") as f:
        results_gt  = preprocess_gt(GT_PATH, class_names)
        json.dump(results_gt, f, indent=4)

    with open(DR_JSON_PATH, "w") as f:
        results_dr  = preprocess_dr(DR_PATH, class_names)
        json.dump(results_dr, f, indent=4)

    cocoGt      = COCO(GT_JSON_PATH)
    cocoDt      = cocoGt.loadRes(DR_JSON_PATH)
    cocoEval    = COCOeval(cocoGt, cocoDt, 'bbox') 
    cocoEval.evaluate()
    cocoEval.accumulate()
    cocoEval.summarize()