Spaces:
Runtime error
Runtime error
from functools import partial | |
from math import prod | |
from typing import Callable | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.nn import Conv1d | |
from torch.nn.utils.parametrizations import weight_norm | |
from torch.nn.utils.parametrize import remove_parametrizations | |
from torch.utils.checkpoint import checkpoint | |
def init_weights(m, mean=0.0, std=0.01): | |
classname = m.__class__.__name__ | |
if classname.find("Conv") != -1: | |
m.weight.data.normal_(mean, std) | |
def get_padding(kernel_size, dilation=1): | |
return (kernel_size * dilation - dilation) // 2 | |
class ResBlock1(torch.nn.Module): | |
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)): | |
super().__init__() | |
self.convs1 = nn.ModuleList( | |
[ | |
weight_norm( | |
Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=dilation[0], | |
padding=get_padding(kernel_size, dilation[0]), | |
) | |
), | |
weight_norm( | |
Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=dilation[1], | |
padding=get_padding(kernel_size, dilation[1]), | |
) | |
), | |
weight_norm( | |
Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=dilation[2], | |
padding=get_padding(kernel_size, dilation[2]), | |
) | |
), | |
] | |
) | |
self.convs1.apply(init_weights) | |
self.convs2 = nn.ModuleList( | |
[ | |
weight_norm( | |
Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=1, | |
padding=get_padding(kernel_size, 1), | |
) | |
), | |
weight_norm( | |
Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=1, | |
padding=get_padding(kernel_size, 1), | |
) | |
), | |
weight_norm( | |
Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=1, | |
padding=get_padding(kernel_size, 1), | |
) | |
), | |
] | |
) | |
self.convs2.apply(init_weights) | |
def forward(self, x): | |
for c1, c2 in zip(self.convs1, self.convs2): | |
xt = F.silu(x) | |
xt = c1(xt) | |
xt = F.silu(xt) | |
xt = c2(xt) | |
x = xt + x | |
return x | |
def remove_parametrizations(self): | |
for conv in self.convs1: | |
remove_parametrizations(conv) | |
for conv in self.convs2: | |
remove_parametrizations(conv) | |
class ParralelBlock(nn.Module): | |
def __init__( | |
self, | |
channels: int, | |
kernel_sizes: tuple[int] = (3, 7, 11), | |
dilation_sizes: tuple[tuple[int]] = ((1, 3, 5), (1, 3, 5), (1, 3, 5)), | |
): | |
super().__init__() | |
assert len(kernel_sizes) == len(dilation_sizes) | |
self.blocks = nn.ModuleList() | |
for k, d in zip(kernel_sizes, dilation_sizes): | |
self.blocks.append(ResBlock1(channels, k, d)) | |
def forward(self, x): | |
return torch.stack([block(x) for block in self.blocks], dim=0).mean(dim=0) | |
class HiFiGANGenerator(nn.Module): | |
def __init__( | |
self, | |
*, | |
hop_length: int = 512, | |
upsample_rates: tuple[int] = (8, 8, 2, 2, 2), | |
upsample_kernel_sizes: tuple[int] = (16, 16, 8, 2, 2), | |
resblock_kernel_sizes: tuple[int] = (3, 7, 11), | |
resblock_dilation_sizes: tuple[tuple[int]] = ((1, 3, 5), (1, 3, 5), (1, 3, 5)), | |
num_mels: int = 128, | |
upsample_initial_channel: int = 512, | |
use_template: bool = True, | |
pre_conv_kernel_size: int = 7, | |
post_conv_kernel_size: int = 7, | |
post_activation: Callable = partial(nn.SiLU, inplace=True), | |
): | |
super().__init__() | |
assert ( | |
prod(upsample_rates) == hop_length | |
), f"hop_length must be {prod(upsample_rates)}" | |
self.conv_pre = weight_norm( | |
nn.Conv1d( | |
num_mels, | |
upsample_initial_channel, | |
pre_conv_kernel_size, | |
1, | |
padding=get_padding(pre_conv_kernel_size), | |
) | |
) | |
self.num_upsamples = len(upsample_rates) | |
self.num_kernels = len(resblock_kernel_sizes) | |
self.noise_convs = nn.ModuleList() | |
self.use_template = use_template | |
self.ups = nn.ModuleList() | |
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): | |
c_cur = upsample_initial_channel // (2 ** (i + 1)) | |
self.ups.append( | |
weight_norm( | |
nn.ConvTranspose1d( | |
upsample_initial_channel // (2**i), | |
upsample_initial_channel // (2 ** (i + 1)), | |
k, | |
u, | |
padding=(k - u) // 2, | |
) | |
) | |
) | |
if not use_template: | |
continue | |
if i + 1 < len(upsample_rates): | |
stride_f0 = np.prod(upsample_rates[i + 1 :]) | |
self.noise_convs.append( | |
Conv1d( | |
1, | |
c_cur, | |
kernel_size=stride_f0 * 2, | |
stride=stride_f0, | |
padding=stride_f0 // 2, | |
) | |
) | |
else: | |
self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1)) | |
self.resblocks = nn.ModuleList() | |
for i in range(len(self.ups)): | |
ch = upsample_initial_channel // (2 ** (i + 1)) | |
self.resblocks.append( | |
ParralelBlock(ch, resblock_kernel_sizes, resblock_dilation_sizes) | |
) | |
self.activation_post = post_activation() | |
self.conv_post = weight_norm( | |
nn.Conv1d( | |
ch, | |
1, | |
post_conv_kernel_size, | |
1, | |
padding=get_padding(post_conv_kernel_size), | |
) | |
) | |
self.ups.apply(init_weights) | |
self.conv_post.apply(init_weights) | |
def forward(self, x, template=None): | |
x = self.conv_pre(x) | |
for i in range(self.num_upsamples): | |
x = F.silu(x, inplace=True) | |
x = self.ups[i](x) | |
if self.use_template: | |
x = x + self.noise_convs[i](template) | |
if self.training and self.checkpointing: | |
x = checkpoint( | |
self.resblocks[i], | |
x, | |
use_reentrant=False, | |
) | |
else: | |
x = self.resblocks[i](x) | |
x = self.activation_post(x) | |
x = self.conv_post(x) | |
x = torch.tanh(x) | |
return x | |
def remove_parametrizations(self): | |
for up in self.ups: | |
remove_parametrizations(up) | |
for block in self.resblocks: | |
block.remove_parametrizations() | |
remove_parametrizations(self.conv_pre) | |
remove_parametrizations(self.conv_post) | |