StableTTS1.1 / models /estimator.py
KdaiP's picture
Upload 80 files
3dd84f8 verified
raw
history blame
5.73 kB
import math
import torch
import torch.nn as nn
from models.diffusion_transformer import DiTConVBlock
class DitWrapper(nn.Module):
""" add FiLM layer to condition time embedding to DiT """
def __init__(self, hidden_channels, filter_channels, num_heads, kernel_size=3, p_dropout=0.1, gin_channels=0, time_channels=0):
super().__init__()
self.time_fusion = FiLMLayer(hidden_channels, time_channels)
self.block = DiTConVBlock(hidden_channels, filter_channels, num_heads, kernel_size, p_dropout, gin_channels)
def forward(self, x, c, t, x_mask):
x = self.time_fusion(x, t) * x_mask
x = self.block(x, c, x_mask)
return x
class FiLMLayer(nn.Module):
"""
Feature-wise Linear Modulation (FiLM) layer
Reference: https://arxiv.org/abs/1709.07871
"""
def __init__(self, in_channels, cond_channels):
super(FiLMLayer, self).__init__()
self.in_channels = in_channels
self.film = nn.Conv1d(cond_channels, in_channels * 2, 1)
def forward(self, x, c):
gamma, beta = torch.chunk(self.film(c.unsqueeze(2)), chunks=2, dim=1)
return gamma * x + beta
class SinusoidalPosEmb(nn.Module):
def __init__(self, dim):
super().__init__()
self.dim = dim
assert self.dim % 2 == 0, "SinusoidalPosEmb requires dim to be even"
def forward(self, x, scale=1000):
if x.ndim < 1:
x = x.unsqueeze(0)
half_dim = self.dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, device=x.device).float() * -emb)
emb = scale * x.unsqueeze(1) * emb.unsqueeze(0)
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
return emb
class TimestepEmbedding(nn.Module):
def __init__(self, in_channels, out_channels, filter_channels):
super().__init__()
self.layer = nn.Sequential(
nn.Linear(in_channels, filter_channels),
nn.SiLU(inplace=True),
nn.Linear(filter_channels, out_channels)
)
def forward(self, x):
return self.layer(x)
# reference: https://github.com/shivammehta25/Matcha-TTS/blob/main/matcha/models/components/decoder.py
class Decoder(nn.Module):
def __init__(self, noise_channels, cond_channels, hidden_channels, out_channels, filter_channels, dropout=0.1, n_layers=1, n_heads=4, kernel_size=3, gin_channels=0, use_lsc=True):
super().__init__()
self.noise_channels = noise_channels
self.cond_channels = cond_channels
self.hidden_channels = hidden_channels
self.out_channels = out_channels
self.filter_channels = filter_channels
self.use_lsc = use_lsc # whether to use unet-like long skip connection
self.time_embeddings = SinusoidalPosEmb(hidden_channels)
self.time_mlp = TimestepEmbedding(hidden_channels, hidden_channels, filter_channels)
self.in_proj = nn.Conv1d(hidden_channels + noise_channels, hidden_channels, 1) # cat noise and encoder output as input
self.blocks = nn.ModuleList([DitWrapper(hidden_channels, filter_channels, n_heads, kernel_size, dropout, gin_channels, hidden_channels) for _ in range(n_layers)])
self.final_proj = nn.Conv1d(hidden_channels, out_channels, 1)
# prenet for encoder output
self.cond_proj = nn.Sequential(
nn.Conv1d(cond_channels, filter_channels, kernel_size, padding=kernel_size//2),
nn.SiLU(inplace=True),
nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size//2), # add about 3M params
nn.SiLU(inplace=True),
nn.Conv1d(filter_channels, hidden_channels, kernel_size, padding=kernel_size//2)
)
if use_lsc:
assert n_layers % 2 == 0
self.n_lsc_layers = n_layers // 2
self.lsc_layers = nn.ModuleList([nn.Conv1d(hidden_channels + hidden_channels, hidden_channels, kernel_size, padding = kernel_size // 2) for _ in range(self.n_lsc_layers)])
self.initialize_weights()
def initialize_weights(self):
for block in self.blocks:
nn.init.constant_(block.block.adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.block.adaLN_modulation[-1].bias, 0)
def forward(self, t, x, mask, mu, c):
"""Forward pass of the DiT model.
Args:
t (torch.Tensor): timestep, shape (batch_size)
x (torch.Tensor): noise, shape (batch_size, in_channels, time)
mask (torch.Tensor): shape (batch_size, 1, time)
mu (torch.Tensor): output of encoder, shape (batch_size, in_channels, time)
c (torch.Tensor): shape (batch_size, gin_channels)
Returns:
_type_: _description_
"""
t = self.time_mlp(self.time_embeddings(t))
mu = self.cond_proj(mu)
x = torch.cat((x, mu), dim=1)
x = self.in_proj(x)
lsc_outputs = [] if self.use_lsc else None
for idx, block in enumerate(self.blocks):
# add long skip connection, see https://arxiv.org/pdf/2209.12152 for more details
if self.use_lsc:
if idx < self.n_lsc_layers:
lsc_outputs.append(x)
else:
x = torch.cat((x, lsc_outputs.pop()), dim=1)
x = self.lsc_layers[idx - self.n_lsc_layers](x)
x = block(x, c, t, mask)
output = self.final_proj(x * mask)
return output * mask