Spaces:
Runtime error
Runtime error
import math | |
import torch | |
import torch.nn as nn | |
from models.diffusion_transformer import DiTConVBlock | |
class DitWrapper(nn.Module): | |
""" add FiLM layer to condition time embedding to DiT """ | |
def __init__(self, hidden_channels, filter_channels, num_heads, kernel_size=3, p_dropout=0.1, gin_channels=0, time_channels=0): | |
super().__init__() | |
self.time_fusion = FiLMLayer(hidden_channels, time_channels) | |
self.block = DiTConVBlock(hidden_channels, filter_channels, num_heads, kernel_size, p_dropout, gin_channels) | |
def forward(self, x, c, t, x_mask): | |
x = self.time_fusion(x, t) * x_mask | |
x = self.block(x, c, x_mask) | |
return x | |
class FiLMLayer(nn.Module): | |
""" | |
Feature-wise Linear Modulation (FiLM) layer | |
Reference: https://arxiv.org/abs/1709.07871 | |
""" | |
def __init__(self, in_channels, cond_channels): | |
super(FiLMLayer, self).__init__() | |
self.in_channels = in_channels | |
self.film = nn.Conv1d(cond_channels, in_channels * 2, 1) | |
def forward(self, x, c): | |
gamma, beta = torch.chunk(self.film(c.unsqueeze(2)), chunks=2, dim=1) | |
return gamma * x + beta | |
class SinusoidalPosEmb(nn.Module): | |
def __init__(self, dim): | |
super().__init__() | |
self.dim = dim | |
assert self.dim % 2 == 0, "SinusoidalPosEmb requires dim to be even" | |
def forward(self, x, scale=1000): | |
if x.ndim < 1: | |
x = x.unsqueeze(0) | |
half_dim = self.dim // 2 | |
emb = math.log(10000) / (half_dim - 1) | |
emb = torch.exp(torch.arange(half_dim, device=x.device).float() * -emb) | |
emb = scale * x.unsqueeze(1) * emb.unsqueeze(0) | |
emb = torch.cat((emb.sin(), emb.cos()), dim=-1) | |
return emb | |
class TimestepEmbedding(nn.Module): | |
def __init__(self, in_channels, out_channels, filter_channels): | |
super().__init__() | |
self.layer = nn.Sequential( | |
nn.Linear(in_channels, filter_channels), | |
nn.SiLU(inplace=True), | |
nn.Linear(filter_channels, out_channels) | |
) | |
def forward(self, x): | |
return self.layer(x) | |
# reference: https://github.com/shivammehta25/Matcha-TTS/blob/main/matcha/models/components/decoder.py | |
class Decoder(nn.Module): | |
def __init__(self, noise_channels, cond_channels, hidden_channels, out_channels, filter_channels, dropout=0.1, n_layers=1, n_heads=4, kernel_size=3, gin_channels=0, use_lsc=True): | |
super().__init__() | |
self.noise_channels = noise_channels | |
self.cond_channels = cond_channels | |
self.hidden_channels = hidden_channels | |
self.out_channels = out_channels | |
self.filter_channels = filter_channels | |
self.use_lsc = use_lsc # whether to use unet-like long skip connection | |
self.time_embeddings = SinusoidalPosEmb(hidden_channels) | |
self.time_mlp = TimestepEmbedding(hidden_channels, hidden_channels, filter_channels) | |
self.in_proj = nn.Conv1d(hidden_channels + noise_channels, hidden_channels, 1) # cat noise and encoder output as input | |
self.blocks = nn.ModuleList([DitWrapper(hidden_channels, filter_channels, n_heads, kernel_size, dropout, gin_channels, hidden_channels) for _ in range(n_layers)]) | |
self.final_proj = nn.Conv1d(hidden_channels, out_channels, 1) | |
# prenet for encoder output | |
self.cond_proj = nn.Sequential( | |
nn.Conv1d(cond_channels, filter_channels, kernel_size, padding=kernel_size//2), | |
nn.SiLU(inplace=True), | |
nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size//2), # add about 3M params | |
nn.SiLU(inplace=True), | |
nn.Conv1d(filter_channels, hidden_channels, kernel_size, padding=kernel_size//2) | |
) | |
if use_lsc: | |
assert n_layers % 2 == 0 | |
self.n_lsc_layers = n_layers // 2 | |
self.lsc_layers = nn.ModuleList([nn.Conv1d(hidden_channels + hidden_channels, hidden_channels, kernel_size, padding = kernel_size // 2) for _ in range(self.n_lsc_layers)]) | |
self.initialize_weights() | |
def initialize_weights(self): | |
for block in self.blocks: | |
nn.init.constant_(block.block.adaLN_modulation[-1].weight, 0) | |
nn.init.constant_(block.block.adaLN_modulation[-1].bias, 0) | |
def forward(self, t, x, mask, mu, c): | |
"""Forward pass of the DiT model. | |
Args: | |
t (torch.Tensor): timestep, shape (batch_size) | |
x (torch.Tensor): noise, shape (batch_size, in_channels, time) | |
mask (torch.Tensor): shape (batch_size, 1, time) | |
mu (torch.Tensor): output of encoder, shape (batch_size, in_channels, time) | |
c (torch.Tensor): shape (batch_size, gin_channels) | |
Returns: | |
_type_: _description_ | |
""" | |
t = self.time_mlp(self.time_embeddings(t)) | |
mu = self.cond_proj(mu) | |
x = torch.cat((x, mu), dim=1) | |
x = self.in_proj(x) | |
lsc_outputs = [] if self.use_lsc else None | |
for idx, block in enumerate(self.blocks): | |
# add long skip connection, see https://arxiv.org/pdf/2209.12152 for more details | |
if self.use_lsc: | |
if idx < self.n_lsc_layers: | |
lsc_outputs.append(x) | |
else: | |
x = torch.cat((x, lsc_outputs.pop()), dim=1) | |
x = self.lsc_layers[idx - self.n_lsc_layers](x) | |
x = block(x, c, t, mask) | |
output = self.final_proj(x * mask) | |
return output * mask |