File size: 5,734 Bytes
3dd84f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import math

import torch
import torch.nn as nn

from models.diffusion_transformer import DiTConVBlock

class DitWrapper(nn.Module):
    """ add FiLM layer to condition time embedding to DiT """
    def __init__(self, hidden_channels, filter_channels, num_heads, kernel_size=3, p_dropout=0.1, gin_channels=0, time_channels=0):
        super().__init__()
        self.time_fusion = FiLMLayer(hidden_channels, time_channels)
        self.block = DiTConVBlock(hidden_channels, filter_channels, num_heads, kernel_size, p_dropout, gin_channels)
            
    def forward(self, x, c, t, x_mask):
        x = self.time_fusion(x, t) * x_mask
        x = self.block(x, c, x_mask)
        return x

class FiLMLayer(nn.Module):
    """

    Feature-wise Linear Modulation (FiLM) layer

    Reference: https://arxiv.org/abs/1709.07871

    """
    def __init__(self, in_channels, cond_channels):

        super(FiLMLayer, self).__init__()
        self.in_channels = in_channels
        self.film = nn.Conv1d(cond_channels, in_channels * 2, 1)

    def forward(self, x, c):
        gamma, beta = torch.chunk(self.film(c.unsqueeze(2)), chunks=2, dim=1)
        return gamma * x + beta
    
class SinusoidalPosEmb(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.dim = dim
        assert self.dim % 2 == 0, "SinusoidalPosEmb requires dim to be even"

    def forward(self, x, scale=1000):
        if x.ndim < 1:
            x = x.unsqueeze(0)
        half_dim = self.dim // 2
        emb = math.log(10000) / (half_dim - 1)
        emb = torch.exp(torch.arange(half_dim, device=x.device).float() * -emb)
        emb = scale * x.unsqueeze(1) * emb.unsqueeze(0)
        emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
        return emb

class TimestepEmbedding(nn.Module):
    def __init__(self, in_channels, out_channels, filter_channels):
        super().__init__()

        self.layer = nn.Sequential(
            nn.Linear(in_channels, filter_channels),
            nn.SiLU(inplace=True),
            nn.Linear(filter_channels, out_channels)
        )

    def forward(self, x):
        return self.layer(x)

# reference: https://github.com/shivammehta25/Matcha-TTS/blob/main/matcha/models/components/decoder.py
class Decoder(nn.Module):
    def __init__(self, noise_channels, cond_channels, hidden_channels, out_channels, filter_channels, dropout=0.1, n_layers=1, n_heads=4, kernel_size=3, gin_channels=0, use_lsc=True):
        super().__init__()
        self.noise_channels = noise_channels
        self.cond_channels = cond_channels
        self.hidden_channels = hidden_channels
        self.out_channels = out_channels
        self.filter_channels = filter_channels
        self.use_lsc = use_lsc # whether to use unet-like long skip connection

        self.time_embeddings = SinusoidalPosEmb(hidden_channels)
        self.time_mlp = TimestepEmbedding(hidden_channels, hidden_channels, filter_channels)

        self.in_proj = nn.Conv1d(hidden_channels + noise_channels, hidden_channels, 1) # cat noise and encoder output as input
        self.blocks = nn.ModuleList([DitWrapper(hidden_channels, filter_channels, n_heads, kernel_size, dropout, gin_channels, hidden_channels) for _ in range(n_layers)])
        self.final_proj = nn.Conv1d(hidden_channels, out_channels, 1)
        
        # prenet for encoder output
        self.cond_proj = nn.Sequential(
            nn.Conv1d(cond_channels, filter_channels, kernel_size, padding=kernel_size//2),
            nn.SiLU(inplace=True),
            nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size//2), # add about 3M params
            nn.SiLU(inplace=True),
            nn.Conv1d(filter_channels, hidden_channels, kernel_size, padding=kernel_size//2)
        )
        
        if use_lsc:
            assert n_layers % 2 == 0
            self.n_lsc_layers = n_layers // 2
            self.lsc_layers = nn.ModuleList([nn.Conv1d(hidden_channels + hidden_channels, hidden_channels, kernel_size, padding = kernel_size // 2) for _ in range(self.n_lsc_layers)])
            
        self.initialize_weights()

    def initialize_weights(self):
        for block in self.blocks:
            nn.init.constant_(block.block.adaLN_modulation[-1].weight, 0)
            nn.init.constant_(block.block.adaLN_modulation[-1].bias, 0)

    def forward(self, t, x, mask, mu, c):
        """Forward pass of the DiT model.



        Args:

            t (torch.Tensor): timestep, shape (batch_size)

            x (torch.Tensor): noise, shape (batch_size, in_channels, time)

            mask (torch.Tensor): shape (batch_size, 1, time)

            mu (torch.Tensor): output of encoder, shape (batch_size, in_channels, time)

            c (torch.Tensor): shape (batch_size, gin_channels)



        Returns:

            _type_: _description_

        """

        t = self.time_mlp(self.time_embeddings(t))
        mu = self.cond_proj(mu)
        
        x = torch.cat((x, mu), dim=1)
        x = self.in_proj(x)
        
        lsc_outputs = [] if self.use_lsc else None

        for idx, block in enumerate(self.blocks):
            # add long skip connection, see https://arxiv.org/pdf/2209.12152 for more details
            if self.use_lsc:
                if idx < self.n_lsc_layers:
                    lsc_outputs.append(x)
                else:
                    x = torch.cat((x, lsc_outputs.pop()), dim=1)
                    x = self.lsc_layers[idx - self.n_lsc_layers](x)
                    
            x = block(x, c, t, mask)

        output = self.final_proj(x * mask)

        return output * mask