Spaces:
Runtime error
Runtime error
File size: 5,231 Bytes
3dd84f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
import os
os.environ['TMPDIR'] = './temps' # avoid the system default temp folder not having access permissions
# os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com' # use huggingfacae mirror for users that could not login to huggingface
import re
import numpy as np
import matplotlib.pyplot as plt
import torch
import gradio as gr
from api import StableTTSAPI
device = 'cuda' if torch.cuda.is_available() else 'cpu'
tts_model_path = './checkpoints/checkpoint_0.pt'
vocoder_model_path = './vocoders/pretrained/firefly-gan-base-generator.ckpt'
vocoder_type = 'ffgan'
model = StableTTSAPI(tts_model_path, vocoder_model_path, vocoder_type).to(device)
@ torch.inference_mode()
def inference(text, ref_audio, language, step, temperature, length_scale, solver, cfg):
text = remove_newlines_after_punctuation(text)
if language == 'chinese':
text = text.replace(' ', '')
audio, mel = model.inference(text, ref_audio, language, step, temperature, length_scale, solver, cfg)
max_val = torch.max(torch.abs(audio))
if max_val > 1:
audio = audio / max_val
audio_output = (model.mel_config.sample_rate, (audio.cpu().squeeze(0).numpy() * 32767).astype(np.int16)) # (samplerate, int16 audio) for gr.Audio
mel_output = plot_mel_spectrogram(mel.cpu().squeeze(0).numpy()) # get the plot of mel
return audio_output, mel_output
def plot_mel_spectrogram(mel_spectrogram):
plt.close() # prevent memory leak
fig, ax = plt.subplots(figsize=(20, 8))
ax.imshow(mel_spectrogram, aspect='auto', origin='lower')
plt.axis('off')
fig.subplots_adjust(left=0, right=1, top=1, bottom=0) # remove white edges
return fig
def remove_newlines_after_punctuation(text):
pattern = r'([,。!?、“”‘’《》【】;:,.!?\'\"<>()\[\]{}])\n'
return re.sub(pattern, r'\1', text)
def main():
from pathlib import Path
examples = list(Path('./audios').rglob('*.wav'))
# gradio wabui, reference: https://huggingface.co/spaces/fishaudio/fish-speech-1
gui_title = 'StableTTS'
gui_description = """Next-generation TTS model using flow-matching and DiT, inspired by Stable Diffusion 3."""
example_text = """你指尖跳动的电光,是我永恒不变的信仰。唯我超电磁炮永世长存!"""
with gr.Blocks(theme=gr.themes.Base()) as demo:
demo.load(None, None, js="() => {const params = new URLSearchParams(window.location.search);if (!params.has('__theme')) {params.set('__theme', 'light');window.location.search = params.toString();}}")
with gr.Row():
with gr.Column():
gr.Markdown(f"# {gui_title}")
gr.Markdown(gui_description)
with gr.Row():
with gr.Column():
input_text_gr = gr.Textbox(
label="Input Text",
info="Put your text here",
value=example_text,
)
ref_audio_gr = gr.Audio(
label="Reference Audio",
type="filepath"
)
language_gr = gr.Dropdown(
label='Language',
choices=list(model.supported_languages),
value = 'chinese'
)
step_gr = gr.Slider(
label='Step',
minimum=1,
maximum=100,
value=25,
step=1
)
temperature_gr = gr.Slider(
label='Temperature',
minimum=0,
maximum=2,
value=1,
)
length_scale_gr = gr.Slider(
label='Length_Scale',
minimum=0,
maximum=5,
value=1,
)
solver_gr = gr.Dropdown(
label='ODE Solver',
choices=['euler', 'midpoint', 'dopri5', 'rk4', 'implicit_adams', 'bosh3', 'fehlberg2', 'adaptive_heun'],
value = 'dopri5'
)
cfg_gr = gr.Slider(
label='CFG',
minimum=0,
maximum=10,
value=3,
)
with gr.Column():
mel_gr = gr.Plot(label="Mel Visual")
audio_gr = gr.Audio(label="Synthesised Audio", autoplay=True)
tts_button = gr.Button("\U0001F3A7 Generate / 合成", elem_id="send-btn", visible=True, variant="primary")
examples = gr.Examples(examples, ref_audio_gr)
tts_button.click(inference, [input_text_gr, ref_audio_gr, language_gr, step_gr, temperature_gr, length_scale_gr, solver_gr, cfg_gr], outputs=[audio_gr, mel_gr])
demo.queue()
demo.launch(debug=True, show_api=True)
if __name__ == '__main__':
main() |