File size: 5,450 Bytes
3dd84f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import torch
import torch.nn as nn
    
class Conv1dGLU(nn.Module):
    """

    Conv1d + GLU(Gated Linear Unit) with residual connection.

    For GLU refer to https://arxiv.org/abs/1612.08083 paper.

    """

    def __init__(self, in_channels, out_channels, kernel_size, dropout):
        super(Conv1dGLU, self).__init__()
        self.out_channels = out_channels
        self.conv1 = nn.Conv1d(in_channels, 2 * out_channels, kernel_size=kernel_size, padding=kernel_size // 2)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        residual = x
        x = self.conv1(x)
        x1, x2 = torch.split(x, self.out_channels, dim=1)
        x = x1 * torch.sigmoid(x2)
        x = residual + self.dropout(x)
        return x

# modified from https://github.com/RVC-Boss/GPT-SoVITS/blob/main/GPT_SoVITS/module/modules.py#L766    
class MelStyleEncoder(nn.Module):
    """MelStyleEncoder"""

    def __init__(

        self,

        n_mel_channels=80,

        style_hidden=128,

        style_vector_dim=256,

        style_kernel_size=5,

        style_head=2,

        dropout=0.1,

    ):
        super(MelStyleEncoder, self).__init__()
        self.in_dim = n_mel_channels
        self.hidden_dim = style_hidden
        self.out_dim = style_vector_dim
        self.kernel_size = style_kernel_size
        self.n_head = style_head
        self.dropout = dropout

        self.spectral = nn.Sequential(
            nn.Linear(self.in_dim, self.hidden_dim),
            nn.Mish(inplace=True),
            nn.Dropout(self.dropout),
            nn.Linear(self.hidden_dim, self.hidden_dim),
            nn.Mish(inplace=True),
            nn.Dropout(self.dropout),
        )

        self.temporal = nn.Sequential(
            Conv1dGLU(self.hidden_dim, self.hidden_dim, self.kernel_size, self.dropout),
            Conv1dGLU(self.hidden_dim, self.hidden_dim, self.kernel_size, self.dropout),
        )

        self.slf_attn = nn.MultiheadAttention(
            self.hidden_dim,
            self.n_head,
            self.dropout,
            batch_first=True
        )

        self.fc = nn.Linear(self.hidden_dim, self.out_dim)

    def temporal_avg_pool(self, x, mask=None):
        if mask is None:
            return torch.mean(x, dim=1)
        else:
            return torch.sum(x * ~mask.unsqueeze(-1), dim=1) / (~mask).sum(dim=1).unsqueeze(1)

    def forward(self, x, x_mask=None):
        x = x.transpose(1, 2)

        # spectral
        x = self.spectral(x)
        # temporal
        x = x.transpose(1, 2)
        x = self.temporal(x)
        x = x.transpose(1, 2)
        # self-attention
        if x_mask is not None:
            x_mask = ~x_mask.squeeze(1).to(torch.bool)   
        x, _ = self.slf_attn(x, x, x, key_padding_mask=x_mask, need_weights=False)
        # fc
        x = self.fc(x)
        # temoral average pooling
        w = self.temporal_avg_pool(x, mask=x_mask)

        return w
    
# Attention Pool version of MelStyleEncoder, not used
class AttnMelStyleEncoder(nn.Module):
    """MelStyleEncoder"""

    def __init__(

        self,

        n_mel_channels=80,

        style_hidden=128,

        style_vector_dim=256,

        style_kernel_size=5,

        style_head=2,

        dropout=0.1,

    ):
        super().__init__()
        self.in_dim = n_mel_channels
        self.hidden_dim = style_hidden
        self.out_dim = style_vector_dim
        self.kernel_size = style_kernel_size
        self.n_head = style_head
        self.dropout = dropout

        self.spectral = nn.Sequential(
            nn.Linear(self.in_dim, self.hidden_dim),
            nn.Mish(inplace=True),
            nn.Dropout(self.dropout),
            nn.Linear(self.hidden_dim, self.hidden_dim),
            nn.Mish(inplace=True),
            nn.Dropout(self.dropout),
        )

        self.temporal = nn.Sequential(
            Conv1dGLU(self.hidden_dim, self.hidden_dim, self.kernel_size, self.dropout),
            Conv1dGLU(self.hidden_dim, self.hidden_dim, self.kernel_size, self.dropout),
        )

        self.slf_attn = nn.MultiheadAttention(
            self.hidden_dim,
            self.n_head,
            self.dropout,
            batch_first=True
        )

        self.fc = nn.Linear(self.hidden_dim, self.out_dim)
        
    def temporal_avg_pool(self, x, mask=None):
        if mask is None:
            return torch.mean(x, dim=1)
        else:
            return torch.sum(x * ~mask.unsqueeze(-1), dim=1) / (~mask).sum(dim=1).unsqueeze(1)

    def forward(self, x, x_mask=None):
        x = x.transpose(1, 2)

        # spectral
        x = self.spectral(x)
        # temporal
        x = x.transpose(1, 2)
        x = self.temporal(x)
        x = x.transpose(1, 2)
        # self-attention
        if x_mask is not None:
            x_mask = ~x_mask.squeeze(1).to(torch.bool)
            zeros = torch.zeros(x_mask.size(0), 1, device=x_mask.device, dtype=x_mask.dtype)
            x_attn_mask = torch.cat((zeros, x_mask), dim=1)
        else:
            x_attn_mask = None

        avg = self.temporal_avg_pool(x, x_mask).unsqueeze(1)
        x = torch.cat([avg, x], dim=1)
        x, _ = self.slf_attn(x, x, x, key_padding_mask=x_attn_mask, need_weights=False)
        x = x[:, 0, :]
        # fc
        x = self.fc(x)

        return x