Spaces:
Runtime error
Runtime error
import cv2 | |
import numpy as np | |
import torch | |
def calculate_psnr(img1, img2, crop_border, input_order='HWC', test_y_channel=False): | |
"""Calculate PSNR (Peak Signal-to-Noise Ratio). | |
Ref: https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio | |
Args: | |
img1 (ndarray): Images with range [0, 255]. | |
img2 (ndarray): Images with range [0, 255]. | |
crop_border (int): Cropped pixels in each edge of an image. These | |
pixels are not involved in the PSNR calculation. | |
input_order (str): Whether the input order is 'HWC' or 'CHW'. | |
Default: 'HWC'. | |
test_y_channel (bool): Test on Y channel of YCbCr. Default: False. | |
Returns: | |
float: psnr result. | |
""" | |
assert img1.shape == img2.shape, (f'Image shapes are differnet: {img1.shape}, {img2.shape}.') | |
if input_order not in ['HWC', 'CHW']: | |
raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are ' '"HWC" and "CHW"') | |
img1 = reorder_image(img1, input_order=input_order) | |
img2 = reorder_image(img2, input_order=input_order) | |
img1 = img1.astype(np.float64) | |
img2 = img2.astype(np.float64) | |
if crop_border != 0: | |
img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...] | |
img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...] | |
if test_y_channel: | |
img1 = to_y_channel(img1) | |
img2 = to_y_channel(img2) | |
mse = np.mean((img1 - img2) ** 2) | |
if mse == 0: | |
return float('inf') | |
return 20. * np.log10(255. / np.sqrt(mse)) | |
def _ssim(img1, img2): | |
"""Calculate SSIM (structural similarity) for one channel images. | |
It is called by func:`calculate_ssim`. | |
Args: | |
img1 (ndarray): Images with range [0, 255] with order 'HWC'. | |
img2 (ndarray): Images with range [0, 255] with order 'HWC'. | |
Returns: | |
float: ssim result. | |
""" | |
C1 = (0.01 * 255) ** 2 | |
C2 = (0.03 * 255) ** 2 | |
img1 = img1.astype(np.float64) | |
img2 = img2.astype(np.float64) | |
kernel = cv2.getGaussianKernel(11, 1.5) | |
window = np.outer(kernel, kernel.transpose()) | |
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] | |
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5] | |
mu1_sq = mu1 ** 2 | |
mu2_sq = mu2 ** 2 | |
mu1_mu2 = mu1 * mu2 | |
sigma1_sq = cv2.filter2D(img1 ** 2, -1, window)[5:-5, 5:-5] - mu1_sq | |
sigma2_sq = cv2.filter2D(img2 ** 2, -1, window)[5:-5, 5:-5] - mu2_sq | |
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2 | |
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)) | |
return ssim_map.mean() | |
def calculate_ssim(img1, img2, crop_border, input_order='HWC', test_y_channel=False): | |
"""Calculate SSIM (structural similarity). | |
Ref: | |
Image quality assessment: From error visibility to structural similarity | |
The results are the same as that of the official released MATLAB code in | |
https://ece.uwaterloo.ca/~z70wang/research/ssim/. | |
For three-channel images, SSIM is calculated for each channel and then | |
averaged. | |
Args: | |
img1 (ndarray): Images with range [0, 255]. | |
img2 (ndarray): Images with range [0, 255]. | |
crop_border (int): Cropped pixels in each edge of an image. These | |
pixels are not involved in the SSIM calculation. | |
input_order (str): Whether the input order is 'HWC' or 'CHW'. | |
Default: 'HWC'. | |
test_y_channel (bool): Test on Y channel of YCbCr. Default: False. | |
Returns: | |
float: ssim result. | |
""" | |
assert img1.shape == img2.shape, (f'Image shapes are differnet: {img1.shape}, {img2.shape}.') | |
if input_order not in ['HWC', 'CHW']: | |
raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are ' '"HWC" and "CHW"') | |
img1 = reorder_image(img1, input_order=input_order) | |
img2 = reorder_image(img2, input_order=input_order) | |
img1 = img1.astype(np.float64) | |
img2 = img2.astype(np.float64) | |
if crop_border != 0: | |
img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...] | |
img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...] | |
if test_y_channel: | |
img1 = to_y_channel(img1) | |
img2 = to_y_channel(img2) | |
ssims = [] | |
for i in range(img1.shape[2]): | |
ssims.append(_ssim(img1[..., i], img2[..., i])) | |
return np.array(ssims).mean() | |
def _blocking_effect_factor(im): | |
block_size = 8 | |
block_horizontal_positions = torch.arange(7, im.shape[3] - 1, 8) | |
block_vertical_positions = torch.arange(7, im.shape[2] - 1, 8) | |
horizontal_block_difference = ( | |
(im[:, :, :, block_horizontal_positions] - im[:, :, :, block_horizontal_positions + 1]) ** 2).sum( | |
3).sum(2).sum(1) | |
vertical_block_difference = ( | |
(im[:, :, block_vertical_positions, :] - im[:, :, block_vertical_positions + 1, :]) ** 2).sum(3).sum( | |
2).sum(1) | |
nonblock_horizontal_positions = np.setdiff1d(torch.arange(0, im.shape[3] - 1), block_horizontal_positions) | |
nonblock_vertical_positions = np.setdiff1d(torch.arange(0, im.shape[2] - 1), block_vertical_positions) | |
horizontal_nonblock_difference = ( | |
(im[:, :, :, nonblock_horizontal_positions] - im[:, :, :, nonblock_horizontal_positions + 1]) ** 2).sum( | |
3).sum(2).sum(1) | |
vertical_nonblock_difference = ( | |
(im[:, :, nonblock_vertical_positions, :] - im[:, :, nonblock_vertical_positions + 1, :]) ** 2).sum( | |
3).sum(2).sum(1) | |
n_boundary_horiz = im.shape[2] * (im.shape[3] // block_size - 1) | |
n_boundary_vert = im.shape[3] * (im.shape[2] // block_size - 1) | |
boundary_difference = (horizontal_block_difference + vertical_block_difference) / ( | |
n_boundary_horiz + n_boundary_vert) | |
n_nonboundary_horiz = im.shape[2] * (im.shape[3] - 1) - n_boundary_horiz | |
n_nonboundary_vert = im.shape[3] * (im.shape[2] - 1) - n_boundary_vert | |
nonboundary_difference = (horizontal_nonblock_difference + vertical_nonblock_difference) / ( | |
n_nonboundary_horiz + n_nonboundary_vert) | |
scaler = np.log2(block_size) / np.log2(min([im.shape[2], im.shape[3]])) | |
bef = scaler * (boundary_difference - nonboundary_difference) | |
bef[boundary_difference <= nonboundary_difference] = 0 | |
return bef | |
def calculate_psnrb(img1, img2, crop_border, input_order='HWC', test_y_channel=False): | |
"""Calculate PSNR-B (Peak Signal-to-Noise Ratio). | |
Ref: Quality assessment of deblocked images, for JPEG image deblocking evaluation | |
# https://gitlab.com/Queuecumber/quantization-guided-ac/-/blob/master/metrics/psnrb.py | |
Args: | |
img1 (ndarray): Images with range [0, 255]. | |
img2 (ndarray): Images with range [0, 255]. | |
crop_border (int): Cropped pixels in each edge of an image. These | |
pixels are not involved in the PSNR calculation. | |
input_order (str): Whether the input order is 'HWC' or 'CHW'. | |
Default: 'HWC'. | |
test_y_channel (bool): Test on Y channel of YCbCr. Default: False. | |
Returns: | |
float: psnr result. | |
""" | |
assert img1.shape == img2.shape, (f'Image shapes are differnet: {img1.shape}, {img2.shape}.') | |
if input_order not in ['HWC', 'CHW']: | |
raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are ' '"HWC" and "CHW"') | |
img1 = reorder_image(img1, input_order=input_order) | |
img2 = reorder_image(img2, input_order=input_order) | |
img1 = img1.astype(np.float64) | |
img2 = img2.astype(np.float64) | |
if crop_border != 0: | |
img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...] | |
img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...] | |
if test_y_channel: | |
img1 = to_y_channel(img1) | |
img2 = to_y_channel(img2) | |
# follow https://gitlab.com/Queuecumber/quantization-guided-ac/-/blob/master/metrics/psnrb.py | |
img1 = torch.from_numpy(img1).permute(2, 0, 1).unsqueeze(0) / 255. | |
img2 = torch.from_numpy(img2).permute(2, 0, 1).unsqueeze(0) / 255. | |
total = 0 | |
for c in range(img1.shape[1]): | |
mse = torch.nn.functional.mse_loss(img1[:, c:c + 1, :, :], img2[:, c:c + 1, :, :], reduction='none') | |
bef = _blocking_effect_factor(img1[:, c:c + 1, :, :]) | |
mse = mse.view(mse.shape[0], -1).mean(1) | |
total += 10 * torch.log10(1 / (mse + bef)) | |
return float(total) / img1.shape[1] | |
def reorder_image(img, input_order='HWC'): | |
"""Reorder images to 'HWC' order. | |
If the input_order is (h, w), return (h, w, 1); | |
If the input_order is (c, h, w), return (h, w, c); | |
If the input_order is (h, w, c), return as it is. | |
Args: | |
img (ndarray): Input image. | |
input_order (str): Whether the input order is 'HWC' or 'CHW'. | |
If the input image shape is (h, w), input_order will not have | |
effects. Default: 'HWC'. | |
Returns: | |
ndarray: reordered image. | |
""" | |
if input_order not in ['HWC', 'CHW']: | |
raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are ' "'HWC' and 'CHW'") | |
if len(img.shape) == 2: | |
img = img[..., None] | |
if input_order == 'CHW': | |
img = img.transpose(1, 2, 0) | |
return img | |
def to_y_channel(img): | |
"""Change to Y channel of YCbCr. | |
Args: | |
img (ndarray): Images with range [0, 255]. | |
Returns: | |
(ndarray): Images with range [0, 255] (float type) without round. | |
""" | |
img = img.astype(np.float32) / 255. | |
if img.ndim == 3 and img.shape[2] == 3: | |
img = bgr2ycbcr(img, y_only=True) | |
img = img[..., None] | |
return img * 255. | |
def _convert_input_type_range(img): | |
"""Convert the type and range of the input image. | |
It converts the input image to np.float32 type and range of [0, 1]. | |
It is mainly used for pre-processing the input image in colorspace | |
convertion functions such as rgb2ycbcr and ycbcr2rgb. | |
Args: | |
img (ndarray): The input image. It accepts: | |
1. np.uint8 type with range [0, 255]; | |
2. np.float32 type with range [0, 1]. | |
Returns: | |
(ndarray): The converted image with type of np.float32 and range of | |
[0, 1]. | |
""" | |
img_type = img.dtype | |
img = img.astype(np.float32) | |
if img_type == np.float32: | |
pass | |
elif img_type == np.uint8: | |
img /= 255. | |
else: | |
raise TypeError('The img type should be np.float32 or np.uint8, ' f'but got {img_type}') | |
return img | |
def _convert_output_type_range(img, dst_type): | |
"""Convert the type and range of the image according to dst_type. | |
It converts the image to desired type and range. If `dst_type` is np.uint8, | |
images will be converted to np.uint8 type with range [0, 255]. If | |
`dst_type` is np.float32, it converts the image to np.float32 type with | |
range [0, 1]. | |
It is mainly used for post-processing images in colorspace convertion | |
functions such as rgb2ycbcr and ycbcr2rgb. | |
Args: | |
img (ndarray): The image to be converted with np.float32 type and | |
range [0, 255]. | |
dst_type (np.uint8 | np.float32): If dst_type is np.uint8, it | |
converts the image to np.uint8 type with range [0, 255]. If | |
dst_type is np.float32, it converts the image to np.float32 type | |
with range [0, 1]. | |
Returns: | |
(ndarray): The converted image with desired type and range. | |
""" | |
if dst_type not in (np.uint8, np.float32): | |
raise TypeError('The dst_type should be np.float32 or np.uint8, ' f'but got {dst_type}') | |
if dst_type == np.uint8: | |
img = img.round() | |
else: | |
img /= 255. | |
return img.astype(dst_type) | |
def bgr2ycbcr(img, y_only=False): | |
"""Convert a BGR image to YCbCr image. | |
The bgr version of rgb2ycbcr. | |
It implements the ITU-R BT.601 conversion for standard-definition | |
television. See more details in | |
https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion. | |
It differs from a similar function in cv2.cvtColor: `BGR <-> YCrCb`. | |
In OpenCV, it implements a JPEG conversion. See more details in | |
https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion. | |
Args: | |
img (ndarray): The input image. It accepts: | |
1. np.uint8 type with range [0, 255]; | |
2. np.float32 type with range [0, 1]. | |
y_only (bool): Whether to only return Y channel. Default: False. | |
Returns: | |
ndarray: The converted YCbCr image. The output image has the same type | |
and range as input image. | |
""" | |
img_type = img.dtype | |
img = _convert_input_type_range(img) | |
if y_only: | |
out_img = np.dot(img, [24.966, 128.553, 65.481]) + 16.0 | |
else: | |
out_img = np.matmul( | |
img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786], [65.481, -37.797, 112.0]]) + [16, 128, 128] | |
out_img = _convert_output_type_range(out_img, img_type) | |
return out_img | |