import os import time from mmcv import Registry, build_from_cfg from torch.utils.data import DataLoader from diffusion.data.transforms import get_transform from diffusion.utils.logger import get_root_logger DATASETS = Registry('datasets') DATA_ROOT = '/cache/data' def set_data_root(data_root): global DATA_ROOT DATA_ROOT = data_root def get_data_path(data_dir): if os.path.isabs(data_dir): return data_dir global DATA_ROOT return os.path.join(DATA_ROOT, data_dir) def build_dataset(cfg, resolution=224, **kwargs): logger = get_root_logger() dataset_type = cfg.get('type') logger.info(f"Constructing dataset {dataset_type}...") t = time.time() transform = cfg.pop('transform', 'default_train') transform = get_transform(transform, resolution) dataset = build_from_cfg(cfg, DATASETS, default_args=dict(transform=transform, resolution=resolution, **kwargs)) logger.info(f"Dataset {dataset_type} constructed. time: {(time.time() - t):.2f} s, length (use/ori): {len(dataset)}/{dataset.ori_imgs_nums}") return dataset def build_dataloader(dataset, batch_size=256, num_workers=4, shuffle=True, **kwargs): if 'batch_sampler' in kwargs: dataloader = DataLoader(dataset, batch_sampler=kwargs['batch_sampler'], num_workers=num_workers, pin_memory=True) else: dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers, pin_memory=True, **kwargs) return dataloader