Spaces:
Runtime error
Runtime error
from diffusers import get_cosine_schedule_with_warmup, get_constant_schedule_with_warmup | |
from torch.optim import Optimizer | |
from torch.optim.lr_scheduler import LambdaLR | |
import math | |
from diffusion.utils.logger import get_root_logger | |
def build_lr_scheduler(config, optimizer, train_dataloader, lr_scale_ratio): | |
if not config.get('lr_schedule_args', None): | |
config.lr_schedule_args = dict() | |
if config.get('lr_warmup_steps', None): | |
config['num_warmup_steps'] = config.get('lr_warmup_steps') # for compatibility with old version | |
logger = get_root_logger() | |
logger.info( | |
f'Lr schedule: {config.lr_schedule}, ' + ",".join( | |
[f"{key}:{value}" for key, value in config.lr_schedule_args.items()]) + '.') | |
if config.lr_schedule == 'cosine': | |
lr_scheduler = get_cosine_schedule_with_warmup( | |
optimizer=optimizer, | |
**config.lr_schedule_args, | |
num_training_steps=(len(train_dataloader) * config.num_epochs), | |
) | |
elif config.lr_schedule == 'constant': | |
lr_scheduler = get_constant_schedule_with_warmup( | |
optimizer=optimizer, | |
**config.lr_schedule_args, | |
) | |
elif config.lr_schedule == 'cosine_decay_to_constant': | |
assert lr_scale_ratio >= 1 | |
lr_scheduler = get_cosine_decay_to_constant_with_warmup( | |
optimizer=optimizer, | |
**config.lr_schedule_args, | |
final_lr=1 / lr_scale_ratio, | |
num_training_steps=(len(train_dataloader) * config.num_epochs), | |
) | |
else: | |
raise RuntimeError(f'Unrecognized lr schedule {config.lr_schedule}.') | |
return lr_scheduler | |
def get_cosine_decay_to_constant_with_warmup(optimizer: Optimizer, | |
num_warmup_steps: int, | |
num_training_steps: int, | |
final_lr: float = 0.0, | |
num_decay: float = 0.667, | |
num_cycles: float = 0.5, | |
last_epoch: int = -1 | |
): | |
""" | |
Create a schedule with a cosine annealing lr followed by a constant lr. | |
Args: | |
optimizer ([`~torch.optim.Optimizer`]): | |
The optimizer for which to schedule the learning rate. | |
num_warmup_steps (`int`): | |
The number of steps for the warmup phase. | |
num_training_steps (`int`): | |
The number of total training steps. | |
final_lr (`int`): | |
The final constant lr after cosine decay. | |
num_decay (`int`): | |
The | |
last_epoch (`int`, *optional*, defaults to -1): | |
The index of the last epoch when resuming training. | |
Return: | |
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule. | |
""" | |
def lr_lambda(current_step): | |
if current_step < num_warmup_steps: | |
return float(current_step) / float(max(1, num_warmup_steps)) | |
num_decay_steps = int(num_training_steps * num_decay) | |
if current_step > num_decay_steps: | |
return final_lr | |
progress = float(current_step - num_warmup_steps) / float(max(1, num_decay_steps - num_warmup_steps)) | |
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress))) * ( | |
1 - final_lr) + final_lr | |
return LambdaLR(optimizer, lr_lambda, last_epoch) | |