File size: 3,299 Bytes
eadd7b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
"""SAMPLING ONLY."""

import torch
import numpy as np

from diffusion.model.sa_solver import NoiseScheduleVP, model_wrapper, SASolver
from .model import gaussian_diffusion as gd


class SASolverSampler(object):
    def __init__(self, model,
                 noise_schedule="linear",
                 diffusion_steps=1000,
                 device='cpu',
                 ):
        super().__init__()
        self.model = model
        self.device = device
        to_torch = lambda x: x.clone().detach().to(torch.float32).to(device)
        betas = torch.tensor(gd.get_named_beta_schedule(noise_schedule, diffusion_steps))
        alphas = 1.0 - betas
        self.register_buffer('alphas_cumprod', to_torch(np.cumprod(alphas, axis=0)))

    def register_buffer(self, name, attr):
        if type(attr) == torch.Tensor:
            if attr.device != torch.device("cuda"):
                attr = attr.to(torch.device("cuda"))
        setattr(self, name, attr)

    @torch.no_grad()
    def sample(self,
               S,
               batch_size,
               shape,
               conditioning=None,
               callback=None,
               normals_sequence=None,
               img_callback=None,
               quantize_x0=False,
               eta=0.,
               mask=None,
               x0=None,
               temperature=1.,
               noise_dropout=0.,
               score_corrector=None,
               corrector_kwargs=None,
               verbose=True,
               x_T=None,
               log_every_t=100,
               unconditional_guidance_scale=1.,
               unconditional_conditioning=None,
               model_kwargs={},
               # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
               **kwargs
               ):
        if conditioning is not None:
            if isinstance(conditioning, dict):
                cbs = conditioning[list(conditioning.keys())[0]].shape[0]
                if cbs != batch_size:
                    print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
            else:
                if conditioning.shape[0] != batch_size:
                    print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")

        # sampling
        C, H, W = shape
        size = (batch_size, C, H, W)

        device = self.device
        if x_T is None:
            img = torch.randn(size, device=device)
        else:
            img = x_T

        ns = NoiseScheduleVP('discrete', alphas_cumprod=self.alphas_cumprod)

        model_fn = model_wrapper(
            self.model,
            ns,
            model_type="noise",
            guidance_type="classifier-free",
            condition=conditioning,
            unconditional_condition=unconditional_conditioning,
            guidance_scale=unconditional_guidance_scale,
            model_kwargs=model_kwargs,
        )

        sasolver = SASolver(model_fn, ns, algorithm_type="data_prediction")

        tau_t = lambda t: eta if 0.2 <= t <= 0.8 else 0

        x = sasolver.sample(mode='few_steps', x=img, tau=tau_t, steps=S, skip_type='time', skip_order=1, predictor_order=2, corrector_order=2, pc_mode='PEC', return_intermediate=False)

        return x.to(device), None