TokaiTeio-SVC / inference /infer_tool.py
Junity's picture
finished trans
51345f0
raw
history blame
9.03 kB
import hashlib
import io
import json
import logging
import os
import time
from pathlib import Path
from inference import slicer
import librosa
import numpy as np
# import onnxruntime
import parselmouth
import soundfile
import torch
import torchaudio
import cluster
from hubert import hubert_model
import utils
from models import SynthesizerTrn
logging.getLogger('matplotlib').setLevel(logging.WARNING)
def read_temp(file_name):
if not os.path.exists(file_name):
with open(file_name, "w") as f:
f.write(json.dumps({"info": "temp_dict"}))
return {}
else:
try:
with open(file_name, "r") as f:
data = f.read()
data_dict = json.loads(data)
if os.path.getsize(file_name) > 50 * 1024 * 1024:
f_name = file_name.replace("\\", "/").split("/")[-1]
print(f"clean {f_name}")
for wav_hash in list(data_dict.keys()):
if int(time.time()) - int(data_dict[wav_hash]["time"]) > 14 * 24 * 3600:
del data_dict[wav_hash]
except Exception as e:
print(e)
print(f"{file_name} error,auto rebuild file")
data_dict = {"info": "temp_dict"}
return data_dict
def write_temp(file_name, data):
with open(file_name, "w") as f:
f.write(json.dumps(data))
def timeit(func):
def run(*args, **kwargs):
t = time.time()
res = func(*args, **kwargs)
print('executing \'%s\' costed %.3fs' % (func.__name__, time.time() - t))
return res
return run
def format_wav(audio_path):
if Path(audio_path).suffix == '.wav':
return
raw_audio, raw_sample_rate = librosa.load(audio_path, mono=True, sr=None)
soundfile.write(Path(audio_path).with_suffix(".wav"), raw_audio, raw_sample_rate)
def get_end_file(dir_path, end):
file_lists = []
for root, dirs, files in os.walk(dir_path):
files = [f for f in files if f[0] != '.']
dirs[:] = [d for d in dirs if d[0] != '.']
for f_file in files:
if f_file.endswith(end):
file_lists.append(os.path.join(root, f_file).replace("\\", "/"))
return file_lists
def get_md5(content):
return hashlib.new("md5", content).hexdigest()
def fill_a_to_b(a, b):
if len(a) < len(b):
for _ in range(0, len(b) - len(a)):
a.append(a[0])
def mkdir(paths: list):
for path in paths:
if not os.path.exists(path):
os.mkdir(path)
def pad_array(arr, target_length):
current_length = arr.shape[0]
if current_length >= target_length:
return arr
else:
pad_width = target_length - current_length
pad_left = pad_width // 2
pad_right = pad_width - pad_left
padded_arr = np.pad(arr, (pad_left, pad_right), 'constant', constant_values=(0, 0))
return padded_arr
class Svc(object):
def __init__(self, net_g_path, config_path,
device=None,
cluster_model_path="logs/44k/kmeans_10000.pt"):
self.net_g_path = net_g_path
if device is None:
self.dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
else:
self.dev = torch.device(device)
self.net_g_ms = None
self.hps_ms = utils.get_hparams_from_file(config_path)
self.target_sample = self.hps_ms.data.sampling_rate
self.hop_size = self.hps_ms.data.hop_length
self.spk2id = self.hps_ms.spk
# 加载hubert
self.hubert_model = utils.get_hubert_model().to(self.dev)
self.load_model()
if os.path.exists(cluster_model_path):
self.cluster_model = cluster.get_cluster_model(cluster_model_path)
def load_model(self):
# 获取模型配置
self.net_g_ms = SynthesizerTrn(
self.hps_ms.data.filter_length // 2 + 1,
self.hps_ms.train.segment_size // self.hps_ms.data.hop_length,
**self.hps_ms.model)
_ = utils.load_checkpoint(self.net_g_path, self.net_g_ms, None)
if "half" in self.net_g_path and torch.cuda.is_available():
_ = self.net_g_ms.half().eval().to(self.dev)
else:
_ = self.net_g_ms.eval().to(self.dev)
def get_unit_f0(self, in_path, tran, cluster_infer_ratio, speaker):
wav, sr = librosa.load(in_path, sr=self.target_sample)
f0 = utils.compute_f0_parselmouth(wav, sampling_rate=self.target_sample, hop_length=self.hop_size)
f0, uv = utils.interpolate_f0(f0)
f0 = torch.FloatTensor(f0)
uv = torch.FloatTensor(uv)
f0 = f0 * 2 ** (tran / 12)
f0 = f0.unsqueeze(0).to(self.dev)
uv = uv.unsqueeze(0).to(self.dev)
wav16k = librosa.resample(wav, orig_sr=self.target_sample, target_sr=16000)
wav16k = torch.from_numpy(wav16k).to(self.dev)
c = utils.get_hubert_content(self.hubert_model, wav_16k_tensor=wav16k)
c = utils.repeat_expand_2d(c.squeeze(0), f0.shape[1])
if cluster_infer_ratio !=0:
cluster_c = cluster.get_cluster_center_result(self.cluster_model, c.cpu().numpy().T, speaker).T
cluster_c = torch.FloatTensor(cluster_c).to(self.dev)
c = cluster_infer_ratio * cluster_c + (1 - cluster_infer_ratio) * c
c = c.unsqueeze(0)
return c, f0, uv
def infer(self, speaker, tran, raw_path,
cluster_infer_ratio=0,
auto_predict_f0=False,
noice_scale=0.4):
speaker_id = self.spk2id[speaker]
sid = torch.LongTensor([int(speaker_id)]).to(self.dev).unsqueeze(0)
c, f0, uv = self.get_unit_f0(raw_path, tran, cluster_infer_ratio, speaker)
if "half" in self.net_g_path and torch.cuda.is_available():
c = c.half()
with torch.no_grad():
start = time.time()
audio = self.net_g_ms.infer(c, f0=f0, g=sid, uv=uv, predict_f0=auto_predict_f0, noice_scale=noice_scale)[0,0].data.float()
use_time = time.time() - start
print("vits use time:{}".format(use_time))
return audio, audio.shape[-1]
def slice_inference(self,raw_audio_path, spk, tran, slice_db,cluster_infer_ratio, auto_predict_f0,noice_scale, pad_seconds=0.5):
wav_path = raw_audio_path
chunks = slicer.cut(wav_path, db_thresh=slice_db)
audio_data, audio_sr = slicer.chunks2audio(wav_path, chunks)
audio = []
for (slice_tag, data) in audio_data:
print(f'#=====segment start, {round(len(data) / audio_sr, 3)}s======')
# padd
pad_len = int(audio_sr * pad_seconds)
data = np.concatenate([np.zeros([pad_len]), data, np.zeros([pad_len])])
length = int(np.ceil(len(data) / audio_sr * self.target_sample))
raw_path = io.BytesIO()
soundfile.write(raw_path, data, audio_sr, format="wav")
raw_path.seek(0)
if slice_tag:
print('jump empty segment')
_audio = np.zeros(length)
else:
out_audio, out_sr = self.infer(spk, tran, raw_path,
cluster_infer_ratio=cluster_infer_ratio,
auto_predict_f0=auto_predict_f0,
noice_scale=noice_scale
)
_audio = out_audio.cpu().numpy()
pad_len = int(self.target_sample * pad_seconds)
_audio = _audio[pad_len:-pad_len]
audio.extend(list(_audio))
return np.array(audio)
class RealTimeVC:
def __init__(self):
self.last_chunk = None
self.last_o = None
self.chunk_len = 16000 # 区块长度
self.pre_len = 3840 # 交叉淡化长度,640的倍数
"""输入输出都是1维numpy 音频波形数组"""
def process(self, svc_model, speaker_id, f_pitch_change, input_wav_path):
import maad
audio, sr = torchaudio.load(input_wav_path)
audio = audio.cpu().numpy()[0]
temp_wav = io.BytesIO()
if self.last_chunk is None:
input_wav_path.seek(0)
audio, sr = svc_model.infer(speaker_id, f_pitch_change, input_wav_path)
audio = audio.cpu().numpy()
self.last_chunk = audio[-self.pre_len:]
self.last_o = audio
return audio[-self.chunk_len:]
else:
audio = np.concatenate([self.last_chunk, audio])
soundfile.write(temp_wav, audio, sr, format="wav")
temp_wav.seek(0)
audio, sr = svc_model.infer(speaker_id, f_pitch_change, temp_wav)
audio = audio.cpu().numpy()
ret = maad.util.crossfade(self.last_o, audio, self.pre_len)
self.last_chunk = audio[-self.pre_len:]
self.last_o = audio
return ret[self.chunk_len:2 * self.chunk_len]