Spaces:
Build error
Build error
import os | |
import glob | |
import re | |
import sys | |
import argparse | |
import logging | |
import json | |
import subprocess | |
import random | |
import librosa | |
import numpy as np | |
from scipy.io.wavfile import read | |
import torch | |
from torch.nn import functional as F | |
from modules.commons import sequence_mask | |
from hubert import hubert_model | |
MATPLOTLIB_FLAG = False | |
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) | |
logger = logging | |
f0_bin = 256 | |
f0_max = 1100.0 | |
f0_min = 50.0 | |
f0_mel_min = 1127 * np.log(1 + f0_min / 700) | |
f0_mel_max = 1127 * np.log(1 + f0_max / 700) | |
# def normalize_f0(f0, random_scale=True): | |
# f0_norm = f0.clone() # create a copy of the input Tensor | |
# batch_size, _, frame_length = f0_norm.shape | |
# for i in range(batch_size): | |
# means = torch.mean(f0_norm[i, 0, :]) | |
# if random_scale: | |
# factor = random.uniform(0.8, 1.2) | |
# else: | |
# factor = 1 | |
# f0_norm[i, 0, :] = (f0_norm[i, 0, :] - means) * factor | |
# return f0_norm | |
# def normalize_f0(f0, random_scale=True): | |
# means = torch.mean(f0[:, 0, :], dim=1, keepdim=True) | |
# if random_scale: | |
# factor = torch.Tensor(f0.shape[0],1).uniform_(0.8, 1.2).to(f0.device) | |
# else: | |
# factor = torch.ones(f0.shape[0], 1, 1).to(f0.device) | |
# f0_norm = (f0 - means.unsqueeze(-1)) * factor.unsqueeze(-1) | |
# return f0_norm | |
def normalize_f0(f0, x_mask, uv, random_scale=True): | |
# calculate means based on x_mask | |
uv_sum = torch.sum(uv, dim=1, keepdim=True) | |
uv_sum[uv_sum == 0] = 9999 | |
means = torch.sum(f0[:, 0, :] * uv, dim=1, keepdim=True) / uv_sum | |
if random_scale: | |
factor = torch.Tensor(f0.shape[0], 1).uniform_(0.8, 1.2).to(f0.device) | |
else: | |
factor = torch.ones(f0.shape[0], 1).to(f0.device) | |
# normalize f0 based on means and factor | |
f0_norm = (f0 - means.unsqueeze(-1)) * factor.unsqueeze(-1) | |
if torch.isnan(f0_norm).any(): | |
exit(0) | |
return f0_norm * x_mask | |
def plot_data_to_numpy(x, y): | |
global MATPLOTLIB_FLAG | |
if not MATPLOTLIB_FLAG: | |
import matplotlib | |
matplotlib.use("Agg") | |
MATPLOTLIB_FLAG = True | |
mpl_logger = logging.getLogger('matplotlib') | |
mpl_logger.setLevel(logging.WARNING) | |
import matplotlib.pylab as plt | |
import numpy as np | |
fig, ax = plt.subplots(figsize=(10, 2)) | |
plt.plot(x) | |
plt.plot(y) | |
plt.tight_layout() | |
fig.canvas.draw() | |
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') | |
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) | |
plt.close() | |
return data | |
def interpolate_f0(f0): | |
''' | |
对F0进行插值处理 | |
''' | |
data = np.reshape(f0, (f0.size, 1)) | |
vuv_vector = np.zeros((data.size, 1), dtype=np.float32) | |
vuv_vector[data > 0.0] = 1.0 | |
vuv_vector[data <= 0.0] = 0.0 | |
ip_data = data | |
frame_number = data.size | |
last_value = 0.0 | |
for i in range(frame_number): | |
if data[i] <= 0.0: | |
j = i + 1 | |
for j in range(i + 1, frame_number): | |
if data[j] > 0.0: | |
break | |
if j < frame_number - 1: | |
if last_value > 0.0: | |
step = (data[j] - data[i - 1]) / float(j - i) | |
for k in range(i, j): | |
ip_data[k] = data[i - 1] + step * (k - i + 1) | |
else: | |
for k in range(i, j): | |
ip_data[k] = data[j] | |
else: | |
for k in range(i, frame_number): | |
ip_data[k] = last_value | |
else: | |
ip_data[i] = data[i] | |
last_value = data[i] | |
return ip_data[:,0], vuv_vector[:,0] | |
def compute_f0_parselmouth(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512): | |
import parselmouth | |
x = wav_numpy | |
if p_len is None: | |
p_len = x.shape[0]//hop_length | |
else: | |
assert abs(p_len-x.shape[0]//hop_length) < 4, "pad length error" | |
time_step = hop_length / sampling_rate * 1000 | |
f0_min = 50 | |
f0_max = 1100 | |
f0 = parselmouth.Sound(x, sampling_rate).to_pitch_ac( | |
time_step=time_step / 1000, voicing_threshold=0.6, | |
pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency'] | |
pad_size=(p_len - len(f0) + 1) // 2 | |
if(pad_size>0 or p_len - len(f0) - pad_size>0): | |
f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant') | |
return f0 | |
def resize_f0(x, target_len): | |
source = np.array(x) | |
source[source<0.001] = np.nan | |
target = np.interp(np.arange(0, len(source)*target_len, len(source))/ target_len, np.arange(0, len(source)), source) | |
res = np.nan_to_num(target) | |
return res | |
def compute_f0_dio(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512): | |
import pyworld | |
if p_len is None: | |
p_len = wav_numpy.shape[0]//hop_length | |
f0, t = pyworld.dio( | |
wav_numpy.astype(np.double), | |
fs=sampling_rate, | |
f0_ceil=800, | |
frame_period=1000 * hop_length / sampling_rate, | |
) | |
f0 = pyworld.stonemask(wav_numpy.astype(np.double), f0, t, sampling_rate) | |
for index, pitch in enumerate(f0): | |
f0[index] = round(pitch, 1) | |
return resize_f0(f0, p_len) | |
def f0_to_coarse(f0): | |
is_torch = isinstance(f0, torch.Tensor) | |
f0_mel = 1127 * (1 + f0 / 700).log() if is_torch else 1127 * np.log(1 + f0 / 700) | |
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * (f0_bin - 2) / (f0_mel_max - f0_mel_min) + 1 | |
f0_mel[f0_mel <= 1] = 1 | |
f0_mel[f0_mel > f0_bin - 1] = f0_bin - 1 | |
f0_coarse = (f0_mel + 0.5).long() if is_torch else np.rint(f0_mel).astype(np.int) | |
assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, (f0_coarse.max(), f0_coarse.min()) | |
return f0_coarse | |
def get_hubert_model(): | |
vec_path = "hubert/checkpoint_best_legacy_500.pt" | |
print("load model(s) from {}".format(vec_path)) | |
from fairseq import checkpoint_utils | |
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task( | |
[vec_path], | |
suffix="", | |
) | |
model = models[0] | |
model.eval() | |
return model | |
def get_hubert_content(hmodel, wav_16k_tensor): | |
feats = wav_16k_tensor | |
if feats.dim() == 2: # double channels | |
feats = feats.mean(-1) | |
assert feats.dim() == 1, feats.dim() | |
feats = feats.view(1, -1) | |
padding_mask = torch.BoolTensor(feats.shape).fill_(False) | |
inputs = { | |
"source": feats.to(wav_16k_tensor.device), | |
"padding_mask": padding_mask.to(wav_16k_tensor.device), | |
"output_layer": 9, # layer 9 | |
} | |
with torch.no_grad(): | |
logits = hmodel.extract_features(**inputs) | |
feats = hmodel.final_proj(logits[0]) | |
return feats.transpose(1, 2) | |
def get_content(cmodel, y): | |
with torch.no_grad(): | |
c = cmodel.extract_features(y.squeeze(1))[0] | |
c = c.transpose(1, 2) | |
return c | |
def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False): | |
assert os.path.isfile(checkpoint_path) | |
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu') | |
iteration = checkpoint_dict['iteration'] | |
learning_rate = checkpoint_dict['learning_rate'] | |
if optimizer is not None and not skip_optimizer and checkpoint_dict['optimizer'] is not None: | |
optimizer.load_state_dict(checkpoint_dict['optimizer']) | |
saved_state_dict = checkpoint_dict['model'] | |
if hasattr(model, 'module'): | |
state_dict = model.module.state_dict() | |
else: | |
state_dict = model.state_dict() | |
new_state_dict = {} | |
for k, v in state_dict.items(): | |
try: | |
# assert "dec" in k or "disc" in k | |
# print("load", k) | |
new_state_dict[k] = saved_state_dict[k] | |
assert saved_state_dict[k].shape == v.shape, (saved_state_dict[k].shape, v.shape) | |
except: | |
print("error, %s is not in the checkpoint" % k) | |
logger.info("%s is not in the checkpoint" % k) | |
new_state_dict[k] = v | |
if hasattr(model, 'module'): | |
model.module.load_state_dict(new_state_dict) | |
else: | |
model.load_state_dict(new_state_dict) | |
print("load ") | |
logger.info("Loaded checkpoint '{}' (iteration {})".format( | |
checkpoint_path, iteration)) | |
return model, optimizer, learning_rate, iteration | |
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path): | |
logger.info("Saving model and optimizer state at iteration {} to {}".format( | |
iteration, checkpoint_path)) | |
if hasattr(model, 'module'): | |
state_dict = model.module.state_dict() | |
else: | |
state_dict = model.state_dict() | |
torch.save({'model': state_dict, | |
'iteration': iteration, | |
'optimizer': optimizer.state_dict(), | |
'learning_rate': learning_rate}, checkpoint_path) | |
def clean_checkpoints(path_to_models='vdecoder/hifigan-a/', n_ckpts_to_keep=2, sort_by_time=True): | |
"""Freeing up space by deleting saved ckpts | |
Arguments: | |
path_to_models -- Path to the model directory | |
n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth | |
sort_by_time -- True -> chronologically delete ckpts | |
False -> lexicographically delete ckpts | |
""" | |
ckpts_files = [f for f in os.listdir(path_to_models) if os.path.isfile(os.path.join(path_to_models, f))] | |
name_key = (lambda _f: int(re.compile('._(\d+)\.pth').match(_f).group(1))) | |
time_key = (lambda _f: os.path.getmtime(os.path.join(path_to_models, _f))) | |
sort_key = time_key if sort_by_time else name_key | |
x_sorted = lambda _x: sorted([f for f in ckpts_files if f.startswith(_x) and not f.endswith('_0.pth')], key=sort_key) | |
to_del = [os.path.join(path_to_models, fn) for fn in | |
(x_sorted('G')[:-n_ckpts_to_keep] + x_sorted('D')[:-n_ckpts_to_keep])] | |
del_info = lambda fn: logger.info(f".. Free up space by deleting ckpt {fn}") | |
del_routine = lambda x: [os.remove(x), del_info(x)] | |
rs = [del_routine(fn) for fn in to_del] | |
def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050): | |
for k, v in scalars.items(): | |
writer.add_scalar(k, v, global_step) | |
for k, v in histograms.items(): | |
writer.add_histogram(k, v, global_step) | |
for k, v in images.items(): | |
writer.add_image(k, v, global_step, dataformats='HWC') | |
for k, v in audios.items(): | |
writer.add_audio(k, v, global_step, audio_sampling_rate) | |
def latest_checkpoint_path(dir_path, regex="G_*.pth"): | |
f_list = glob.glob(os.path.join(dir_path, regex)) | |
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f)))) | |
x = f_list[-1] | |
print(x) | |
return x | |
def plot_spectrogram_to_numpy(spectrogram): | |
global MATPLOTLIB_FLAG | |
if not MATPLOTLIB_FLAG: | |
import matplotlib | |
matplotlib.use("Agg") | |
MATPLOTLIB_FLAG = True | |
mpl_logger = logging.getLogger('matplotlib') | |
mpl_logger.setLevel(logging.WARNING) | |
import matplotlib.pylab as plt | |
import numpy as np | |
fig, ax = plt.subplots(figsize=(10,2)) | |
im = ax.imshow(spectrogram, aspect="auto", origin="lower", | |
interpolation='none') | |
plt.colorbar(im, ax=ax) | |
plt.xlabel("Frames") | |
plt.ylabel("Channels") | |
plt.tight_layout() | |
fig.canvas.draw() | |
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') | |
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) | |
plt.close() | |
return data | |
def plot_alignment_to_numpy(alignment, info=None): | |
global MATPLOTLIB_FLAG | |
if not MATPLOTLIB_FLAG: | |
import matplotlib | |
matplotlib.use("Agg") | |
MATPLOTLIB_FLAG = True | |
mpl_logger = logging.getLogger('matplotlib') | |
mpl_logger.setLevel(logging.WARNING) | |
import matplotlib.pylab as plt | |
import numpy as np | |
fig, ax = plt.subplots(figsize=(6, 4)) | |
im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower', | |
interpolation='none') | |
fig.colorbar(im, ax=ax) | |
xlabel = 'Decoder timestep' | |
if info is not None: | |
xlabel += '\n\n' + info | |
plt.xlabel(xlabel) | |
plt.ylabel('Encoder timestep') | |
plt.tight_layout() | |
fig.canvas.draw() | |
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') | |
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) | |
plt.close() | |
return data | |
def load_wav_to_torch(full_path): | |
sampling_rate, data = read(full_path) | |
return torch.FloatTensor(data.astype(np.float32)), sampling_rate | |
def load_filepaths_and_text(filename, split="|"): | |
with open(filename, encoding='utf-8') as f: | |
filepaths_and_text = [line.strip().split(split) for line in f] | |
return filepaths_and_text | |
def get_hparams(init=True): | |
parser = argparse.ArgumentParser() | |
parser.add_argument('-c', '--config', type=str, default="./configs/base.json", | |
help='JSON file for configuration') | |
parser.add_argument('-m', '--model', type=str, required=True, | |
help='Model name') | |
args = parser.parse_args() | |
model_dir = os.path.join("./logs", args.model) | |
if not os.path.exists(model_dir): | |
os.makedirs(model_dir) | |
config_path = args.config | |
config_save_path = os.path.join(model_dir, "config.json") | |
if init: | |
with open(config_path, "r") as f: | |
data = f.read() | |
with open(config_save_path, "w") as f: | |
f.write(data) | |
else: | |
with open(config_save_path, "r") as f: | |
data = f.read() | |
config = json.loads(data) | |
hparams = HParams(**config) | |
hparams.model_dir = model_dir | |
return hparams | |
def get_hparams_from_dir(model_dir): | |
config_save_path = os.path.join(model_dir, "config.json") | |
with open(config_save_path, "r") as f: | |
data = f.read() | |
config = json.loads(data) | |
hparams =HParams(**config) | |
hparams.model_dir = model_dir | |
return hparams | |
def get_hparams_from_file(config_path): | |
with open(config_path, "r") as f: | |
data = f.read() | |
config = json.loads(data) | |
hparams =HParams(**config) | |
return hparams | |
def check_git_hash(model_dir): | |
source_dir = os.path.dirname(os.path.realpath(__file__)) | |
if not os.path.exists(os.path.join(source_dir, ".git")): | |
logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format( | |
source_dir | |
)) | |
return | |
cur_hash = subprocess.getoutput("git rev-parse HEAD") | |
path = os.path.join(model_dir, "githash") | |
if os.path.exists(path): | |
saved_hash = open(path).read() | |
if saved_hash != cur_hash: | |
logger.warn("git hash values are different. {}(saved) != {}(current)".format( | |
saved_hash[:8], cur_hash[:8])) | |
else: | |
open(path, "w").write(cur_hash) | |
def get_logger(model_dir, filename="train.log"): | |
global logger | |
logger = logging.getLogger(os.path.basename(model_dir)) | |
logger.setLevel(logging.DEBUG) | |
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s") | |
if not os.path.exists(model_dir): | |
os.makedirs(model_dir) | |
h = logging.FileHandler(os.path.join(model_dir, filename)) | |
h.setLevel(logging.DEBUG) | |
h.setFormatter(formatter) | |
logger.addHandler(h) | |
return logger | |
def repeat_expand_2d(content, target_len): | |
# content : [h, t] | |
src_len = content.shape[-1] | |
target = torch.zeros([content.shape[0], target_len], dtype=torch.float).to(content.device) | |
temp = torch.arange(src_len+1) * target_len / src_len | |
current_pos = 0 | |
for i in range(target_len): | |
if i < temp[current_pos+1]: | |
target[:, i] = content[:, current_pos] | |
else: | |
current_pos += 1 | |
target[:, i] = content[:, current_pos] | |
return target | |
class HParams(): | |
def __init__(self, **kwargs): | |
for k, v in kwargs.items(): | |
if type(v) == dict: | |
v = HParams(**v) | |
self[k] = v | |
def keys(self): | |
return self.__dict__.keys() | |
def items(self): | |
return self.__dict__.items() | |
def values(self): | |
return self.__dict__.values() | |
def __len__(self): | |
return len(self.__dict__) | |
def __getitem__(self, key): | |
return getattr(self, key) | |
def __setitem__(self, key, value): | |
return setattr(self, key, value) | |
def __contains__(self, key): | |
return key in self.__dict__ | |
def __repr__(self): | |
return self.__dict__.__repr__() | |