JuanjoSG5 commited on
Commit
688951f
1 Parent(s): 8f5ecb1

feat: added the main app

Browse files
Files changed (1) hide show
  1. app.py +61 -0
app.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC, AutoTokenizer, BartForConditionalGeneration
3
+ import torch
4
+ import librosa
5
+
6
+ # Load BART tokenizer and model for summarization
7
+ tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
8
+ summarizer = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
9
+
10
+ # Load Wav2Vec2 processor and model for transcription
11
+ processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
12
+ model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
13
+
14
+ # Check if CUDA is available
15
+ device = "cuda" if torch.cuda.is_available() else "cpu"
16
+ model.to(device)
17
+ summarizer.to(device)
18
+
19
+ def transcribe_and_summarize(audioFile):
20
+ # Load audio as an array
21
+ audio, sampling_rate = librosa.load(audioFile, sr=16000) # Ensure it's 16kHz for Wav2Vec2
22
+ values = processor(audio, sampling_rate=sampling_rate, return_tensors="pt").input_values
23
+
24
+ # Move tensors to GPU if available
25
+ values = values.to(device)
26
+
27
+ # Transcription
28
+ with torch.no_grad():
29
+ logits = model(values).logits
30
+ predictedIDs = torch.argmax(logits, dim=-1)
31
+ transcription = processor.batch_decode(predictedIDs, skip_special_tokens=True)[0]
32
+
33
+ # Summarization
34
+ inputs = tokenizer(transcription, return_tensors="pt", truncation=True, max_length=1024)
35
+ inputs = inputs.to(device) # Move inputs to GPU
36
+
37
+ result = summarizer.generate(
38
+ inputs["input_ids"],
39
+ min_length=10,
40
+ max_length=256,
41
+ no_repeat_ngram_size=2,
42
+ encoder_no_repeat_ngram_size=2,
43
+ repetition_penalty=2.0,
44
+ num_beams=4,
45
+ early_stopping=True,
46
+ )
47
+ summary = tokenizer.decode(result[0], skip_special_tokens=True)
48
+
49
+ return transcription, summary
50
+
51
+ # Gradio interface
52
+ iface = gr.Interface(
53
+ fn=transcribe_and_summarize,
54
+ inputs=gr.Audio(type="filepath", label="Upload Audio"),
55
+ outputs=[gr.Textbox(label="Transcription"), gr.Textbox(label="Summary")],
56
+ title="Audio Transcription and Summarization",
57
+ description="Transcribe and summarize audio using Wav2Vec2 and BART.",
58
+ )
59
+
60
+ iface.launch()
61
+