JuanjoSG5
feat: extended the summary length to 1024 chars
1fc799c
raw
history blame
2.14 kB
import gradio as gr
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC, AutoTokenizer, BartForConditionalGeneration
import torch
import librosa
# Load BART tokenizer and model for summarization
tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
summarizer = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
# Load Wav2Vec2 processor and model for transcription
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
# Check if CUDA is available
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
summarizer.to(device)
def transcribe_and_summarize(audioFile):
# Load audio as an array
audio, sampling_rate = librosa.load(audioFile, sr=16000) # Ensure it's 16kHz for Wav2Vec2
values = processor(audio, sampling_rate=sampling_rate, return_tensors="pt").input_values
# Move tensors to GPU if available
values = values.to(device)
# Transcription
with torch.no_grad():
logits = model(values).logits
predictedIDs = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predictedIDs, skip_special_tokens=True)[0]
# Summarization
inputs = tokenizer(transcription, return_tensors="pt", truncation=True, max_length=1024)
inputs = inputs.to(device) # Move inputs to GPU
result = summarizer.generate(
inputs["input_ids"],
min_length=10,
max_length=1024,
no_repeat_ngram_size=2,
encoder_no_repeat_ngram_size=2,
repetition_penalty=2.0,
num_beams=4,
early_stopping=True,
)
summary = tokenizer.decode(result[0], skip_special_tokens=True)
return transcription, summary
# Gradio interface
iface = gr.Interface(
fn=transcribe_and_summarize,
inputs=gr.Audio(type="filepath", label="Upload Audio"),
outputs=[gr.Textbox(label="Transcription"), gr.Textbox(label="Summary")],
title="Audio Transcription and Summarization",
description="Transcribe and summarize audio using Wav2Vec2 and BART.",
)
iface.launch()