import os import gradio as gr from random import randint from all_models import models from datetime import datetime from externalmod import gr_Interface_load import asyncio import os from threading import RLock lock = RLock() HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary. now2 = 0 nb_models=24 inference_timeout = 300 MAX_SEED = 2**32-1 def split_models(models,nb_models): models_temp=[] models_lis_temp=[] i=0 for m in models: models_temp.append(m) i=i+1 if i%nb_models==0: models_lis_temp.append(models_temp) models_temp=[] if len(models_temp)>1: models_lis_temp.append(models_temp) return models_lis_temp def split_models_axb(models,a,b): models_temp=[] models_lis_temp=[] i=0 nb_models=b for m in models: for j in range(a): models_temp.append(m) i=i+1 if i%nb_models==0: models_lis_temp.append(models_temp) models_temp=[] if len(models_temp)>1: models_lis_temp.append(models_temp) return models_lis_temp , a*b def split_models_8x3(models,nb_models): models_temp=[] models_lis_temp=[] i=0 nb_models_x3=8 for m in models: models_temp.append(m) i=i+1 if i%nb_models_x3==0: models_lis_temp.append(models_temp+models_temp+models_temp) models_temp=[] if len(models_temp)>1: models_lis_temp.append(models_temp+models_temp+models_temp) return models_lis_temp """models_test=split_models_x3(models,nb_models)""" """models_test=split_models(models,nb_models)""" models_test , nb_models =split_models_axb(models,2,20) def get_current_time(): now = datetime.now() now2 = now current_time = now2.strftime("%Y-%m-%d %H:%M:%S") kii = "" # ? ki = f'{kii} {current_time}' return ki def load_fn_original(models): global models_load global num_models global default_models models_load = {} num_models = len(models) if num_models!=0: default_models = models[:num_models] else: default_models = {} for model in models: if model not in models_load.keys(): try: m = gr.load(f'models/{model}') except Exception as error: m = gr.Interface(lambda txt: None, ['text'], ['image']) print(error) models_load.update({model: m}) def load_fn(models): global models_load global num_models global default_models models_load = {} num_models = len(models) if num_models!=0: default_models = models[:num_models] else: default_models = {} for model in models: if model not in models_load.keys(): try: m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN) except Exception as error: m = gr.Interface(lambda txt: None, ['text'], ['image']) print(error) models_load.update({model: m}) """models = models_test[1]""" #load_fn_original load_fn(models) """models = {} load_fn(models)""" def extend_choices(choices): return choices + (nb_models - len(choices)) * ['NA'] """return choices + (num_models - len(choices)) * ['NA']""" def extend_choices_b(choices): choices_plus = extend_choices(choices) return [gr.Textbox(m, visible=False) for m in choices_plus] def update_imgbox(choices): choices_plus = extend_choices(choices) return [gr.Image(None, label=m, visible=(m != 'NA')) for m in choices_plus] def choice_group_a(group_model_choice): for m in models_test: if group_model_choice==m[1]: choice=m print(choice) return choice def choice_group_b(group_model_choice): choice=choice_group_a(group_model_choice) choice = extend_choices(choice) """return [gr.Image(label=m, min_width=170, height=170) for m in choice]""" return [gr.Image(None, label=m, visible=(m != 'NA')) for m in choice] def choice_group_c(group_model_choice): choice=choice_group_a(group_model_choice) choice = extend_choices(choice) return [gr.Textbox(m, visible=False) for m in choice] def choice_group_d(var_Test): (gen_button,stop_button,output,current_models, txt_input)=var_Test for m, o in zip(current_models, output): gen_event = gen_button.click(gen_fn, [m, txt_input], o) stop_button.click(lambda: gr.update(interactive=False), None, stop_button, cancels=[gen_event]) return gen_event def test_pass(test): if test==os.getenv('p'): #if True: print("ok") return gr.Dropdown(label="test Model", show_label=False, choices=list(models_test) , allow_custom_value=True) else: print("nop") return gr.Dropdown(label="test Model", show_label=False, choices=list([]) , allow_custom_value=True) # https://huggingface.co/docs/api-inference/detailed_parameters # https://huggingface.co/docs/huggingface_hub/package_reference/inference_client async def infer(model_str, prompt, nprompt="", height=None, width=None, steps=None, cfg=None, seed=-1, timeout=inference_timeout): from pathlib import Path kwargs = {} if height is not None and height >= 256: kwargs["height"] = height if width is not None and width >= 256: kwargs["width"] = width if steps is not None and steps >= 1: kwargs["num_inference_steps"] = steps if cfg is not None and cfg > 0: cfg = kwargs["guidance_scale"] = cfg noise = "" if seed >= 0: kwargs["seed"] = seed else: rand = randint(1, 500) for i in range(rand): noise += " " task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn, prompt=f'{prompt} {noise}', negative_prompt=nprompt, **kwargs, token=HF_TOKEN)) await asyncio.sleep(0) try: result = await asyncio.wait_for(task, timeout=timeout) except (Exception, asyncio.TimeoutError) as e: print(e) print(f"Task timed out: {model_str}") if not task.done(): task.cancel() result = None if task.done() and result is not None: with lock: png_path = "image.png" result.save(png_path) image = str(Path(png_path).resolve()) return image return None def gen_fn(model_str, prompt, nprompt="", height=None, width=None, steps=None, cfg=None, seed=-1): if model_str == 'NA': return None try: loop = asyncio.new_event_loop() result = loop.run_until_complete(infer(model_str, prompt, nprompt, height, width, steps, cfg, seed, inference_timeout)) except (Exception, asyncio.CancelledError) as e: print(e) print(f"Task aborted: {model_str}") result = None finally: loop.close() return result def gen_fn_original(model_str, prompt): if model_str == 'NA': return None noise = str(randint(0, 9999)) try : m=models_load[model_str](f'{prompt} {noise}') except Exception as error : print("error : " + model_str) print(error) m=False return m def make_me(): # with gr.Tab('The Dream'): with gr.Row(): #txt_input = gr.Textbox(lines=3, width=300, max_height=100) #txt_input = gr.Textbox(label='Your prompt:', lines=3, width=300, max_height=100) with gr.Column(scale=4): with gr.Group(): txt_input = gr.Textbox(label='Your prompt:', lines=3) with gr.Accordion("Advanced", open=False, visible=True): neg_input = gr.Textbox(label='Negative prompt:', lines=1) with gr.Row(): width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0) height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0) with gr.Row(): steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0) cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0) seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1) #gen_button = gr.Button('Generate images', width=150, height=30) #stop_button = gr.Button('Stop', variant='secondary', interactive=False, width=150, height=30) gen_button = gr.Button('Generate images', scale=3) stop_button = gr.Button('Stop', variant='secondary', interactive=False, scale=1) gen_button.click(lambda: gr.update(interactive=True), None, stop_button) #gr.HTML(""" #
# # #
#""") with gr.Row(): """output = [gr.Image(label=m, min_width=170, height=170) for m in default_models] current_models = [gr.Textbox(m, visible=False) for m in default_models]""" """choices=[models_test[0][0]]""" choices=models_test[0] """output = [gr.Image(label=m, min_width=170, height=170) for m in choices] current_models = [gr.Textbox(m, visible=False) for m in choices]""" output = update_imgbox([choices[0]]) current_models = extend_choices_b([choices[0]]) for m, o in zip(current_models, output): #gen_event = gen_button.click(gen_fn_original, [m, txt_input], o) gen_event = gr.on(triggers=[gen_button.click, txt_input.submit], fn=gen_fn, inputs=[m, txt_input, neg_input, height, width, steps, cfg, seed], outputs=[o]) stop_button.click(lambda: gr.update(interactive=False), None, stop_button, cancels=[gen_event]) """with gr.Accordion('Model selection'): model_choice = gr.CheckboxGroup(models, label=f' {num_models} different models selected', value=default_models, multiselect=True, max_choices=num_models, interactive=True, filterable=False) model_choice.change(update_imgbox, (gen_button,stop_button,group_model_choice), output) model_choice.change(extend_choices, model_choice, current_models) """ with gr.Accordion("test", open=True): """group_model_choice = gr.Dropdown(label="test Model", show_label=False, choices=list(models_test) , allow_custom_value=True)""" group_model_choice = gr.Dropdown(label="test Model", show_label=False, choices=list([]) , allow_custom_value=True) group_model_choice.change(choice_group_b,group_model_choice,output) group_model_choice.change(choice_group_c,group_model_choice,current_models) """group_model_choice.change(choice_group_d,(gen_button,stop_button,output,current_models,txt_input),gen_event)""" with gr.Row(): #txt_input_p = gr.Textbox(label='test', lines=1, width=300, max_height=100) txt_input_p = gr.Textbox(label='test', lines=1) #test_button = gr.Button('test', width=30, height=10) test_button = gr.Button('test') test_button.click(test_pass,txt_input_p,group_model_choice) with gr.Row(): gr.HTML("""