File size: 12,989 Bytes
2b8f0f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
748d896
 
2b8f0f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1ed6c1
 
 
 
 
 
247223f
 
d1ed6c1
247223f
 
d1ed6c1
 
2b8f0f4
d1ed6c1
c3a12ff
d1ed6c1
2b8f0f4
d1ed6c1
 
 
 
 
 
2b8f0f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f63e07b
 
 
 
 
 
 
2b8f0f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1ed6c1
2b8f0f4
 
 
 
 
 
247223f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import os
import gradio as gr
from random import randint
from all_models import models
from datetime import datetime
from externalmod import gr_Interface_load
import asyncio
import os
from threading import RLock
lock = RLock()
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.

now2 = 0
nb_models=24
inference_timeout = 300
MAX_SEED = 2**32-1

def split_models(models,nb_models):
    models_temp=[]
    models_lis_temp=[]
    i=0
    for m in models:
        models_temp.append(m)
        i=i+1
        if i%nb_models==0:
            models_lis_temp.append(models_temp)
            models_temp=[]
    if len(models_temp)>1:
        models_lis_temp.append(models_temp)
    return models_lis_temp

def split_models_axb(models,a,b):
    models_temp=[]
    models_lis_temp=[]
    i=0
    nb_models=b
    for m in models:
        for j in range(a):
            models_temp.append(m)
        i=i+1
        if i%nb_models==0:
            models_lis_temp.append(models_temp)
            models_temp=[]
    if len(models_temp)>1:
        models_lis_temp.append(models_temp)
    return models_lis_temp , a*b

def split_models_8x3(models,nb_models):
    models_temp=[]
    models_lis_temp=[]
    i=0
    nb_models_x3=8
    for m in models:
        models_temp.append(m)
        i=i+1
        if i%nb_models_x3==0:
            models_lis_temp.append(models_temp+models_temp+models_temp)
            models_temp=[]
    if len(models_temp)>1:
        models_lis_temp.append(models_temp+models_temp+models_temp)
    return models_lis_temp

"""models_test=split_models_x3(models,nb_models)"""
"""models_test=split_models(models,nb_models)"""
models_test , nb_models =split_models_axb(models,2,20)

def get_current_time():
    now = datetime.now()
    now2 = now
    current_time = now2.strftime("%Y-%m-%d %H:%M:%S")
    kii = "" # ?
    ki = f'{kii} {current_time}'
    return ki

def load_fn_original(models):
    global models_load
    global num_models
    global default_models
    models_load = {}
    num_models = len(models)
    if num_models!=0:
        default_models = models[:num_models]
    else:
        default_models = {}
    for model in models:
        if model not in models_load.keys():
            try:
                m = gr.load(f'models/{model}')
            except Exception as error:
                m = gr.Interface(lambda txt: None, ['text'], ['image'])
                print(error)
            models_load.update({model: m})

def load_fn(models):
    global models_load
    global num_models
    global default_models
    models_load = {}
    num_models = len(models)
    if num_models!=0:
        default_models = models[:num_models]
    else:
        default_models = {}
    for model in models:
        if model not in models_load.keys():
            try:
                m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
            except Exception as error:
                m = gr.Interface(lambda txt: None, ['text'], ['image'])
                print(error)
            models_load.update({model: m})


"""models = models_test[1]"""
#load_fn_original
load_fn(models)
"""models = {}

load_fn(models)"""
    

def extend_choices(choices):
    return choices + (nb_models - len(choices)) * ['NA']
    """return choices + (num_models - len(choices)) * ['NA']"""

def extend_choices_b(choices):
    choices_plus = extend_choices(choices)
    return [gr.Textbox(m, visible=False) for m in choices_plus]

def update_imgbox(choices):
    choices_plus = extend_choices(choices)
    return [gr.Image(None, label=m, visible=(m != 'NA')) for m in choices_plus]

def choice_group_a(group_model_choice):
    for m in models_test:
        if group_model_choice==m[1]:
            choice=m
    print(choice)
    return choice

def choice_group_b(group_model_choice):
    choice=choice_group_a(group_model_choice)
    choice = extend_choices(choice)
    """return [gr.Image(label=m, min_width=170, height=170) for m in choice]"""
    return [gr.Image(None, label=m, visible=(m != 'NA')) for m in choice]

def choice_group_c(group_model_choice):
    choice=choice_group_a(group_model_choice)
    choice = extend_choices(choice)
    return [gr.Textbox(m, visible=False) for m in choice]

def choice_group_d(var_Test):
    (gen_button,stop_button,output,current_models, txt_input)=var_Test
    for m, o in zip(current_models, output):
        gen_event = gen_button.click(gen_fn, [m, txt_input], o)
        stop_button.click(lambda: gr.update(interactive=False), None, stop_button, cancels=[gen_event])
    return gen_event

def test_pass(test):
    if test==os.getenv('p'):
    #if True:
        print("ok")
        return gr.Dropdown(label="test Model", show_label=False, choices=list(models_test) , allow_custom_value=True)
    else:
        print("nop")
        return gr.Dropdown(label="test Model", show_label=False, choices=list([]) , allow_custom_value=True)

# https://huggingface.co/docs/api-inference/detailed_parameters
# https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
async def infer(model_str, prompt, nprompt="", height=None, width=None, steps=None, cfg=None, seed=-1, timeout=inference_timeout):
    from pathlib import Path
    kwargs = {}
    if height is not None and height >= 256: kwargs["height"] = height
    if width is not None and width >= 256: kwargs["width"] = width
    if steps is not None and steps >= 1: kwargs["num_inference_steps"] = steps
    if cfg is not None and cfg > 0: cfg = kwargs["guidance_scale"] = cfg
    noise = ""
    if seed >= 0: kwargs["seed"] = seed
    else:
        rand = randint(1, 500)
        for i in range(rand):
            noise += " "
    task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn,
                               prompt=f'{prompt} {noise}', negative_prompt=nprompt, **kwargs, token=HF_TOKEN))
    await asyncio.sleep(0)
    try:
        result = await asyncio.wait_for(task, timeout=timeout)
    except (Exception, asyncio.TimeoutError) as e:
        print(e)
        print(f"Task timed out: {model_str}")
        if not task.done(): task.cancel()
        result = None
    if task.done() and result is not None:
        with lock:
            png_path = "image.png"
            result.save(png_path)
            image = str(Path(png_path).resolve())
        return image
    return None

def gen_fn(model_str, prompt, nprompt="", height=None, width=None, steps=None, cfg=None, seed=-1):
    if model_str == 'NA':
        return None
    try:
        loop = asyncio.new_event_loop()
        result = loop.run_until_complete(infer(model_str, prompt, nprompt,
                                         height, width, steps, cfg, seed, inference_timeout))
    except (Exception, asyncio.CancelledError) as e:
        print(e)
        print(f"Task aborted: {model_str}")
        result = None
    finally:
        loop.close()
    return result

def gen_fn_original(model_str, prompt):
    if model_str == 'NA':
        return None
    noise = str(randint(0, 9999))
    try :
        m=models_load[model_str](f'{prompt} {noise}')
    except Exception as error : 
        print("error : " + model_str)
        print(error)
        m=False
    
    return m

def make_me():
   # with gr.Tab('The Dream'): 
        with gr.Row():
            #txt_input = gr.Textbox(lines=3, width=300, max_height=100)
            #txt_input = gr.Textbox(label='Your prompt:', lines=3, width=300, max_height=100)
            with gr.Column(scale=4):
                with gr.Group():
                    txt_input = gr.Textbox(label='Your prompt:', lines=3)
                    with gr.Accordion("Advanced", open=False, visible=True):
                        neg_input = gr.Textbox(label='Negative prompt:', lines=1)
                        with gr.Row():
                            width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
                            height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
                        with gr.Row():
                            steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
                            cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
                            seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
                #gen_button = gr.Button('Generate images', width=150, height=30)
            #stop_button = gr.Button('Stop', variant='secondary', interactive=False, width=150, height=30)
            gen_button = gr.Button('Generate images', scale=3)
            stop_button = gr.Button('Stop', variant='secondary', interactive=False, scale=1)

            gen_button.click(lambda: gr.update(interactive=True), None, stop_button)
            #gr.HTML("""
            #<div style="text-align: center; max-width: 100%; margin: 0 auto;">
            #    <body>
            #    </body>
            #</div>
            #""")
        with gr.Row():
            """output = [gr.Image(label=m, min_width=170, height=170) for m in default_models]

            current_models = [gr.Textbox(m, visible=False) for m in default_models]"""
            """choices=[models_test[0][0]]"""
            choices=models_test[0]
            """output = [gr.Image(label=m, min_width=170, height=170) for m in choices]

            current_models = [gr.Textbox(m, visible=False) for m in choices]"""
            output = update_imgbox([choices[0]])
            current_models = extend_choices_b([choices[0]])
            
            for m, o in zip(current_models, output):
                #gen_event = gen_button.click(gen_fn_original, [m, txt_input], o)
                gen_event = gr.on(triggers=[gen_button.click, txt_input.submit], fn=gen_fn,
                                inputs=[m, txt_input, neg_input, height, width, steps, cfg, seed], outputs=[o])
                stop_button.click(lambda: gr.update(interactive=False), None, stop_button, cancels=[gen_event])
        """with gr.Accordion('Model selection'):

            model_choice = gr.CheckboxGroup(models, label=f' {num_models} different models selected', value=default_models, multiselect=True, max_choices=num_models, interactive=True, filterable=False)

            model_choice.change(update_imgbox, (gen_button,stop_button,group_model_choice), output)

            model_choice.change(extend_choices, model_choice, current_models)

        """     
        
        with gr.Accordion("test", open=True):
            """group_model_choice = gr.Dropdown(label="test Model", show_label=False, choices=list(models_test) , allow_custom_value=True)"""
            group_model_choice = gr.Dropdown(label="test Model", show_label=False, choices=list([]) , allow_custom_value=True)
            group_model_choice.change(choice_group_b,group_model_choice,output)
            group_model_choice.change(choice_group_c,group_model_choice,current_models)
            """group_model_choice.change(choice_group_d,(gen_button,stop_button,output,current_models,txt_input),gen_event)"""
            with gr.Row():
                #txt_input_p = gr.Textbox(label='test', lines=1, width=300, max_height=100)
                txt_input_p = gr.Textbox(label='test', lines=1)
            
                #test_button = gr.Button('test', width=30, height=10)
                test_button = gr.Button('test')
                test_button.click(test_pass,txt_input_p,group_model_choice)
        with gr.Row():
            gr.HTML("""

                <div class="footer">

                <p> Based on the <a href="https://huggingface.co/spaces/derwahnsinn/TestGen">TestGen</a> Space by derwahnsinn, the <a href="https://huggingface.co/spaces/RdnUser77/SpacIO_v1">SpacIO</a> Space by RdnUser77 and Omnibus's Maximum Multiplier!

                </p>

            """)


js_code = """



    

    console.log('ghgh');



"""


with gr.Blocks(theme="Nymbo/Nymbo_Theme", fill_width=True, css="div.float.svelte-1mwvhlq {    position: absolute;    top: var(--block-label-margin);    left: var(--block-label-margin);    background: none;    border: none;}") as demo: 
    gr.Markdown("<script>" + js_code + "</script>")
    make_me()


# https://www.gradio.app/guides/setting-up-a-demo-for-maximum-performance
#demo.queue(concurrency_count=999) # concurrency_count is deprecated in 4.x
demo.queue(default_concurrency_limit=200, max_size=200)
demo.launch(max_threads=400)