import gradio as gr import torch from tqdm import tqdm import re from transformers import AutoTokenizer, AutoModelForSeq2SeqLM MODEL_NAME = "csebuetnlp/mT5_multilingual_XLSum" WHITESPACE_HANDLER = lambda k: re.sub('\s+', ' ', re.sub('\n+', ' ', k.strip())) tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME) def summarize(text): input_ids = tokenizer( [WHITESPACE_HANDLER(text)], return_tensors="pt", padding="max_length", truncation=True, max_length=512 )["input_ids"] output_ids = model.generate( input_ids=input_ids, max_length=84, no_repeat_ngram_size=2, num_beams=4 )[0] summary = tokenizer.decode( output_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False ) return summary demo = gr.Blocks(title="⭐ Summ4rizer ⭐") demo.encrypt = False with demo: gr.Markdown(f'''

Text Summarizer

Using summarization Model from {MODEL_NAME}.
''') text = gr.Textbox(label="Text here !!", lines=1, interactive=True) summarize_btn = gr.Button("Let's Summarize",) summarization = gr.Textbox() html_output = gr.Markdown() summarize_btn.click(summarize, [text], outputs=[html_output, summarization]) demo.launch()