Spaces:
Paused
Paused
from fengshen.examples.pegasus.data_utils import ( | |
_is_control, | |
_is_punctuation, | |
_is_whitespace, | |
_is_chinese_char) | |
from transformers import PreTrainedTokenizer | |
from transformers import logging | |
from typing import List, Optional, Tuple, Union | |
import collections | |
import os | |
import unicodedata | |
import re | |
import jieba | |
import sys | |
sys.path.append("../../../../") | |
jieba.dt.tmp_dir = os.path.expanduser( | |
"/cognitive_comp/dongxiaoqun/software/jieba/tmp/") | |
# jieba.enable_parallel(8) | |
jieba.initialize() | |
logger = logging.get_logger(__name__) | |
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} | |
def load_vocab(vocab_file): | |
"""Loads a vocabulary file into a dictionary.""" | |
vocab = collections.OrderedDict() | |
with open(vocab_file, "r", encoding="utf-8") as reader: | |
tokens = reader.readlines() | |
for index, token in enumerate(tokens): | |
token = token.rstrip("\n") | |
vocab[token] = index | |
return vocab | |
def whitespace_tokenize(text): | |
"""Runs basic whitespace cleaning and splitting on a piece of text.""" | |
text = text.strip() | |
if not text: | |
return [] | |
tokens = text.split() | |
return tokens | |
class PegasusTokenizer(PreTrainedTokenizer): | |
# copy from BertTokenizer | |
r""" | |
Construct a Pegasus tokenizer. Based on WordPiece. | |
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to | |
this superclass for more information regarding those methods. | |
Args: | |
vocab_file (`str`): | |
File containing the vocabulary. | |
do_lower_case (`bool`, *optional*, defaults to `True`): | |
Whether or not to lowercase the input when tokenizing. | |
do_basic_tokenize (`bool`, *optional*, defaults to `True`): | |
Whether or not to do basic tokenization before WordPiece. | |
never_split (`Iterable`, *optional*): | |
Collection of tokens which will never be split during tokenization. Only has an effect when | |
`do_basic_tokenize=True` | |
unk_token (`str`, *optional*, defaults to `"[UNK]"`): | |
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this | |
token instead. | |
sep_token (`str`, *optional*, defaults to `"[SEP]"`): | |
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for | |
sequence classification or for a text and a question for question answering. It is also used as the last | |
token of a sequence built with special tokens. | |
pad_token (`str`, *optional*, defaults to `"[PAD]"`): | |
The token used for padding, for example when batching sequences of different lengths. | |
cls_token (`str`, *optional*, defaults to `"[CLS]"`): | |
The classifier token which is used when doing sequence classification (classification of the whole sequence | |
instead of per-token classification). It is the first token of the sequence when built with special tokens. | |
mask_token (`str`, *optional*, defaults to `"[MASK]"`): | |
The token used for masking values. This is the token used when training this model with masked language | |
modeling. This is the token which the model will try to predict. | |
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): | |
Whether or not to tokenize Chinese characters. | |
This should likely be deactivated for Japanese (see this | |
[issue](https://github.com/huggingface/transformers/issues/328)). | |
strip_accents (`bool`, *optional*): | |
Whether or not to strip all accents. If this option is not specified, then it will be determined by the | |
value for `lowercase` (as in the original BERT). | |
""" | |
vocab_files_names = VOCAB_FILES_NAMES | |
model_input_names = ["input_ids", "attention_mask"] | |
# pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP | |
# pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION | |
# max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES | |
def __init__(self, | |
vocab_file, | |
do_lower_case=True, | |
do_basic_tokenize=True, | |
never_split=None, | |
pad_token="<pad>", | |
eos_token="</s>", | |
unk_token="<unk>", | |
mask_token="<mask_2>", | |
mask_token_sent="<mask_1>", | |
additional_special_tokens=None, | |
sep_token="[SEP]", | |
cls_token="[CLS]", | |
tokenize_chinese_chars=True, | |
strip_accents=None, | |
offset=100, | |
pre_tokenizer=lambda x: jieba.cut(x, HMM=False), | |
**kwargs): | |
self.offset = offset | |
if additional_special_tokens is not None: | |
if not isinstance(additional_special_tokens, list): | |
raise TypeError( | |
f"additional_special_tokens should be of type {type(list)}, \ | |
but is {type(additional_special_tokens)}" | |
) | |
additional_special_tokens_extended = ( | |
([mask_token_sent] + additional_special_tokens) | |
if mask_token_sent not in additional_special_tokens | |
and mask_token_sent is not None else additional_special_tokens) | |
# fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken | |
additional_special_tokens_extended += [ | |
f"<unk_{i}>" for i in range( | |
len(additional_special_tokens_extended), self.offset - 1) | |
] | |
if len(set(additional_special_tokens_extended)) != len( | |
additional_special_tokens_extended): | |
raise ValueError( | |
f"Please make sure that the provided additional_special_tokens \ | |
do not contain an incorrectly shifted list of <unk_x> tokens. \ | |
Found {additional_special_tokens_extended}." | |
) | |
additional_special_tokens = additional_special_tokens_extended | |
else: | |
additional_special_tokens = [ | |
mask_token_sent | |
] if mask_token_sent is not None else [] | |
# additional_special_tokens += [f"<unk_{i}>" for i in range(3, self.offset)] | |
# print("additional_special_tokens: ", additional_special_tokens) | |
if not os.path.isfile(vocab_file): | |
raise ValueError( | |
f"Can't find a vocabulary file at path '{vocab_file}'. \ | |
To load the vocabulary from a Google pretrained " | |
"model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" | |
) | |
super().__init__( | |
do_lower_case=do_lower_case, | |
do_basic_tokenize=do_basic_tokenize, | |
never_split=never_split, | |
unk_token=unk_token, | |
sep_token=sep_token, | |
pad_token=pad_token, | |
cls_token=cls_token, | |
mask_token=mask_token, | |
eos_token=eos_token, | |
tokenize_chinese_chars=tokenize_chinese_chars, | |
additional_special_tokens=additional_special_tokens, | |
strip_accents=strip_accents, | |
**kwargs, | |
) | |
self.pre_tokenizer = pre_tokenizer | |
self.mask_token_sent = mask_token_sent | |
self.vocab = load_vocab(vocab_file) | |
self.vocab[self.eos_token] = self.vocab.pop("[unused1]") | |
# self.vocab[self.eos_token] = self.vocab.pop("[unused2]") | |
self.vocab[self.pad_token] = self.vocab.pop("[PAD]") | |
self.vocab[self.unk_token] = self.vocab.pop("[UNK]") | |
if self.mask_token_sent is not None: | |
self.vocab[self.mask_token] = self.vocab.pop("[unused3]") | |
self.vocab[self.mask_token_sent] = self.vocab.pop("[unused2]") | |
self.ids_to_tokens = collections.OrderedDict([ | |
(ids, tok) for tok, ids in self.vocab.items() | |
]) | |
self.do_basic_tokenize = do_basic_tokenize | |
if do_basic_tokenize: | |
self.basic_tokenizer = BasicTokenizer( | |
do_lower_case=do_lower_case, | |
never_split=never_split, | |
tokenize_chinese_chars=tokenize_chinese_chars, | |
strip_accents=strip_accents, | |
) | |
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, | |
unk_token=self.unk_token) | |
def do_lower_case(self): | |
return self.basic_tokenizer.do_lower_case | |
def vocab_size(self): | |
return len(self.vocab) | |
def get_vocab(self): | |
return dict(self.vocab, **self.added_tokens_encoder) | |
def _tokenize(self, text): | |
split_tokens = [] | |
# print("pegasus_tokenizer: ", text) | |
for text in self.pre_tokenizer(text): | |
if text in self.vocab: | |
split_tokens.append(text) | |
else: | |
if self.do_basic_tokenize: | |
for token in self.basic_tokenizer.tokenize( | |
text, never_split=self.all_special_tokens): | |
# If the token is part of the never_split set | |
if token in self.basic_tokenizer.never_split: | |
split_tokens.append(token) | |
else: | |
split_tokens += self.wordpiece_tokenizer.tokenize( | |
token) | |
else: | |
split_tokens = self.wordpiece_tokenizer.tokenize(text) | |
return split_tokens | |
def _convert_token_to_id(self, token): | |
"""Converts a token (str) in an id using the vocab.""" | |
return self.vocab.get(token, self.vocab.get(self.unk_token)) | |
def _convert_id_to_token(self, index): | |
"""Converts an index (integer) in a token (str) using the vocab.""" | |
return self.ids_to_tokens.get(index, self.unk_token) | |
def _cjk_punctuation(): | |
return u'\uff02\uff03\uff04\uff05\uff06\uff07\uff08\uff09\uff0a\uff0b\uff0c\uff0d\uff0f\uff1a\uff1b\uff1c\uff1d\ | |
\uff1e\uff20\uff3b\uff3c\uff3d\uff3e\uff3f\uff40\uff5b\uff5c\uff5d\uff5e\uff5f\uff60\uff62\ | |
\uff63\uff64\u3000\u3001\u3003\u3008\u3009\u300a\u300b\u300c\u300d\u300e\u300f\u3010\u3011\u3014\ | |
\u3015\u3016\u3017\u3018\u3019\u301a\u301b\u301c\u301d\u301e\u301f\u3030\u303e\u303f\u2013\u2014\ | |
\u2018\u2019\u201b\u201c\u201d\u201e\u201f\u2026\u2027\ufe4f\ufe51\ufe54\u00b7\uff01\uff1f\uff61\u3002' | |
def convert_ids_to_tokens( | |
self, | |
ids: Union[int, List[int]], | |
skip_special_tokens: bool = False) -> Union[str, List[str]]: | |
""" | |
Converts a single index or a sequence of indices in a token or a sequence of tokens, using the vocabulary and | |
added tokens. | |
Args: | |
ids (`int` or `List[int]`): | |
The token id (or token ids) to convert to tokens. | |
skip_special_tokens (`bool`, *optional*, defaults to `False`): | |
Whether or not to remove special tokens in the decoding. | |
Returns: | |
`str` or `List[str]`: The decoded token(s). | |
""" | |
if isinstance(ids, int): | |
if ids in self.added_tokens_decoder: | |
return self.added_tokens_decoder[ids] | |
else: | |
return self._convert_id_to_token(ids) | |
tokens = [] | |
for index in ids: | |
index = int(index) | |
if skip_special_tokens and index in self.all_special_ids and index != 2: | |
continue | |
if index in self.added_tokens_decoder: | |
tokens.append(self.added_tokens_decoder[index]) | |
else: | |
tokens.append(self._convert_id_to_token(index)) | |
return tokens | |
def convert_tokens_to_string(self, tokens): | |
"""Converts a sequence of tokens (string) in a single string.""" | |
# for token in | |
# tokens = tokens or self.ids_to_tokens(ids) | |
# tokens = [token for token in tokens if not self._is_special(token)] | |
text = '' | |
for i, token in enumerate(tokens): | |
if token[:2] == '##': | |
text += token[2:] | |
elif len(token) == 1 and _is_chinese_char(ord(token)): | |
text += token | |
elif len(token) == 1 and _is_punctuation(token): | |
text += token | |
text += ' ' | |
elif i > 0 and _is_chinese_char(ord(text[-1])): | |
text += token | |
elif tokens == "</s>": | |
continue | |
else: | |
text += ' ' | |
text += token | |
text = re.sub(' +', ' ', text) | |
text = re.sub('\' (re|m|s|t|ve|d|ll) ', '\'\\1 ', text) | |
punctuation = re.sub(' +', '', self._cjk_punctuation()).strip() + '+-/={(<[' | |
punctuation_regex = '|'.join([re.escape(p) for p in punctuation]) | |
punctuation_regex = '(%s) ' % punctuation_regex | |
text = re.sub(punctuation_regex, '\\1', text) | |
text = re.sub(r'(\d\.) (\d)', '\\1\\2', text) | |
return text.strip() | |
# out_string = " ".join(tokens).replace(" ##", "").strip() | |
def build_inputs_with_special_tokens( | |
self, | |
token_ids_0: List[int], | |
token_ids_1: Optional[List[int]] = None) -> List[int]: | |
""" | |
Build model inputs from a sequence or a pair of sequences for sequence classification tasks by concatenating | |
and adding special tokens. A PEGASUS sequence has the following format, where `X` represents the sequence: | |
- single sequence: `X </s>` | |
- pair of sequences: `A B </s>` (not intended use) | |
BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a | |
separator. | |
Args: | |
token_ids_0 (`List[int]`): | |
List of IDs to which the special tokens will be added. | |
token_ids_1 (`List[int]`, *optional*): | |
Optional second list of IDs for sequence pairs. | |
Returns: | |
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. | |
""" | |
if token_ids_1 is None: | |
return token_ids_0 + [self.eos_token_id] | |
return token_ids_0 + token_ids_1 + [self.eos_token_id] | |
def _special_token_mask(self, seq): | |
all_special_ids = set( | |
self.all_special_ids) # call it once instead of inside list comp | |
# all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special | |
return [1 if x in all_special_ids else 0 for x in seq] | |
def get_special_tokens_mask( | |
self, | |
token_ids_0: List[int], | |
token_ids_1: Optional[List[int]] = None, | |
already_has_special_tokens: bool = False) -> List[int]: | |
""" | |
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding | |
special tokens using the tokenizer `prepare_for_model` method. | |
Args: | |
token_ids_0 (`List[int]`): | |
List of IDs. | |
token_ids_1 (`List[int]`, *optional*): | |
Optional second list of IDs for sequence pairs. | |
already_has_special_tokens (`bool`, *optional*, defaults to `False`): | |
Whether or not the token list is already formatted with special tokens for the model. | |
Returns: | |
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. | |
""" | |
if already_has_special_tokens: | |
return self._special_token_mask(token_ids_0) | |
elif token_ids_1 is None: | |
return self._special_token_mask(token_ids_0) + [self.eos_token_id] | |
else: | |
return self._special_token_mask(token_ids_0 + | |
token_ids_1) + [self.eos_token_id] | |
def num_special_tokens_to_add(self, pair=False): | |
"""Just EOS""" | |
return 1 | |
def save_vocabulary(self, | |
save_directory: str, | |
filename_prefix: Optional[str] = None) -> Tuple[str]: | |
index = 0 | |
if os.path.isdir(save_directory): | |
vocab_file = os.path.join( | |
save_directory, | |
(filename_prefix + "-" if filename_prefix else "") + | |
VOCAB_FILES_NAMES["vocab_file"]) | |
else: | |
vocab_file = (filename_prefix + | |
"-" if filename_prefix else "") + save_directory | |
with open(vocab_file, "w", encoding="utf-8") as writer: | |
for token, token_index in sorted(self.vocab.items(), | |
key=lambda kv: kv[1]): | |
if index != token_index: | |
logger.warning( | |
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." | |
" Please check that the vocabulary is not corrupted!") | |
index = token_index | |
writer.write(token + "\n") | |
index += 1 | |
return (vocab_file, ) | |
class BasicTokenizer(object): | |
""" | |
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). | |
Args: | |
do_lower_case (`bool`, *optional*, defaults to `True`): | |
Whether or not to lowercase the input when tokenizing. | |
never_split (`Iterable`, *optional*): | |
Collection of tokens which will never be split during tokenization. Only has an effect when | |
`do_basic_tokenize=True` | |
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): | |
Whether or not to tokenize Chinese characters. | |
This should likely be deactivated for Japanese (see this | |
[issue](https://github.com/huggingface/transformers/issues/328)). | |
strip_accents: (`bool`, *optional*): | |
Whether or not to strip all accents. If this option is not specified, then it will be determined by the | |
value for `lowercase` (as in the original BERT). | |
""" | |
def __init__(self, | |
do_lower_case=True, | |
never_split=None, | |
tokenize_chinese_chars=True, | |
strip_accents=None): | |
if never_split is None: | |
never_split = [] | |
self.do_lower_case = do_lower_case | |
self.never_split = set(never_split) | |
self.tokenize_chinese_chars = tokenize_chinese_chars | |
self.strip_accents = strip_accents | |
def tokenize(self, text, never_split=None): | |
""" | |
Basic Tokenization of a piece of text. Split on "white spaces" only, for sub-word tokenization, see | |
WordPieceTokenizer. | |
Args: | |
never_split (`List[str]`, *optional*) | |
Kept for backward compatibility purposes. Now implemented directly at the base class level (see | |
[`PreTrainedTokenizer.tokenize`]) List of token not to split. | |
""" | |
# union() returns a new set by concatenating the two sets. | |
never_split = self.never_split.union( | |
set(never_split)) if never_split else self.never_split | |
text = self._clean_text(text) | |
# This was added on November 1st, 2018 for the multilingual and Chinese | |
# models. This is also applied to the English models now, but it doesn't | |
# matter since the English models were not trained on any Chinese data | |
# and generally don't have any Chinese data in them (there are Chinese | |
# characters in the vocabulary because Wikipedia does have some Chinese | |
# words in the English Wikipedia.). | |
if self.tokenize_chinese_chars: | |
text = self._tokenize_chinese_chars(text) | |
orig_tokens = whitespace_tokenize(text) | |
split_tokens = [] | |
for token in orig_tokens: | |
if token not in never_split: | |
if self.do_lower_case: | |
token = token.lower() | |
if self.strip_accents is not False: | |
token = self._run_strip_accents(token) | |
elif self.strip_accents: | |
token = self._run_strip_accents(token) | |
split_tokens.extend(self._run_split_on_punc(token, never_split)) | |
output_tokens = whitespace_tokenize(" ".join(split_tokens)) | |
return output_tokens | |
def _run_strip_accents(self, text): | |
"""Strips accents from a piece of text.""" | |
text = unicodedata.normalize("NFD", text) | |
output = [] | |
for char in text: | |
cat = unicodedata.category(char) | |
if cat == "Mn": | |
continue | |
output.append(char) | |
return "".join(output) | |
def _run_split_on_punc(self, text, never_split=None): | |
"""Splits punctuation on a piece of text.""" | |
if never_split is not None and text in never_split: | |
return [text] | |
chars = list(text) | |
i = 0 | |
start_new_word = True | |
output = [] | |
while i < len(chars): | |
char = chars[i] | |
if _is_punctuation(char): | |
output.append([char]) | |
start_new_word = True | |
else: | |
if start_new_word: | |
output.append([]) | |
start_new_word = False | |
output[-1].append(char) | |
i += 1 | |
return ["".join(x) for x in output] | |
def _tokenize_chinese_chars(self, text): | |
"""Adds whitespace around any CJK character.""" | |
output = [] | |
for char in text: | |
cp = ord(char) | |
if self._is_chinese_char(cp): | |
output.append(" ") | |
output.append(char) | |
output.append(" ") | |
else: | |
output.append(char) | |
return "".join(output) | |
def _is_chinese_char(self, cp): | |
"""Checks whether CP is the codepoint of a CJK character.""" | |
# This defines a "chinese character" as anything in the CJK Unicode block: | |
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) | |
# | |
# Note that the CJK Unicode block is NOT all Japanese and Korean characters, | |
# despite its name. The modern Korean Hangul alphabet is a different block, | |
# as is Japanese Hiragana and Katakana. Those alphabets are used to write | |
# space-separated words, so they are not treated specially and handled | |
# like the all of the other languages. | |
if ((cp >= 0x4E00 and cp <= 0x9FFF) | |
or (cp >= 0x3400 and cp <= 0x4DBF) # | |
or (cp >= 0x20000 and cp <= 0x2A6DF) # | |
or (cp >= 0x2A700 and cp <= 0x2B73F) # | |
or (cp >= 0x2B740 and cp <= 0x2B81F) # | |
or (cp >= 0x2B820 and cp <= 0x2CEAF) # | |
or (cp >= 0xF900 and cp <= 0xFAFF) | |
or (cp >= 0x2F800 and cp <= 0x2FA1F)): # | |
return True | |
return False | |
def _clean_text(self, text): | |
"""Performs invalid character removal and whitespace cleanup on text.""" | |
output = [] | |
for char in text: | |
cp = ord(char) | |
if cp == 0 or cp == 0xFFFD or _is_control(char): | |
continue | |
if _is_whitespace(char): | |
output.append(" ") | |
else: | |
output.append(char) | |
return "".join(output) | |
class WordpieceTokenizer(object): | |
"""Runs WordPiece tokenization.""" | |
def __init__(self, vocab, unk_token, max_input_chars_per_word=100): | |
self.vocab = vocab | |
self.unk_token = unk_token | |
self.max_input_chars_per_word = max_input_chars_per_word | |
def tokenize(self, text): | |
""" | |
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform | |
tokenization using the given vocabulary. | |
For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`. | |
Args: | |
text: A single token or whitespace separated tokens. This should have | |
already been passed through *BasicTokenizer*. | |
Returns: | |
A list of wordpiece tokens. | |
""" | |
output_tokens = [] | |
for token in whitespace_tokenize(text): | |
chars = list(token) | |
if len(chars) > self.max_input_chars_per_word: | |
output_tokens.append(self.unk_token) | |
continue | |
is_bad = False | |
start = 0 | |
sub_tokens = [] | |
while start < len(chars): | |
end = len(chars) | |
cur_substr = None | |
while start < end: | |
substr = "".join(chars[start:end]) | |
if start > 0: | |
substr = "##" + substr | |
if substr in self.vocab: | |
cur_substr = substr | |
break | |
end -= 1 | |
if cur_substr is None: | |
is_bad = True | |
break | |
sub_tokens.append(cur_substr) | |
start = end | |
if is_bad: | |
output_tokens.append(self.unk_token) | |
else: | |
output_tokens.extend(sub_tokens) | |
return output_tokens | |